Patents by Inventor C. Reese

C. Reese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9900031
    Abstract: A method for carrying data on a live host signal, comprising the steps of: varying timing in a host signal in response to data to be encoded, wherein variations in timing are smaller than a sampling period for detection and capture of the digital signal receiving the live host signal; sensing pulse timing variations in the received live host signal by comparison to a reference signal; and determining information in the sensed timing variations.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: February 20, 2018
    Assignee: Raytheon Company
    Inventors: Andrew Kowalevicz, Tom Borton, Michael C. Reese, Gary M. Graceffo
  • Publication number: 20170275970
    Abstract: The present disclosure describes methods and systems to enhance subsurface models of fractured reservoirs. In particular, the methods and systems described herein incorporate the effects of “dynamic” compressible fractures and, thus, can improve predictions of fractured reservoir performance over time. The methods and systems may utilize predictive algorithms for mechanical and hydraulic stiffness properties of the fracture network that are based at least in part on a database of measurements derived from single fractures.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 28, 2017
    Inventors: Brian R. CRAWFORD, Janelle M. Homburg, Jordan A. Freysteinson, William C. Reese, Michael C. Tsenn
  • Publication number: 20170084768
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20170011276
    Abstract: In one general embodiment, an article of manufacture includes an objective reference having at least two optical references. The optical references are selected from a group consisting of: a non-human-visible mark, a ruler, a spaced grid, a color calibration area, an area of reflectivity, a texture, and a pattern. In at other general embodiment, a method includes receiving an image of a product and an objective reference having at least two optical references. The optical references are selected from a group consisting of: a non-human-visible mark, a ruler, a spaced grid, a color calibration area, an area of reflectivity, a texture, and a pattern. The product is evaluated by comparing the product in the image to the optical references in the image.
    Type: Application
    Filed: July 8, 2016
    Publication date: January 12, 2017
    Inventors: Peter A. Mehring, Thomas C. Reese
  • Patent number: 9525092
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 20, 2016
    Assignee: Pacific Light Technologies Corp.
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20160336977
    Abstract: A method for carrying data on a live host signal, comprising the steps of: varying timing in a host signal in response to data to be encoded, wherein variations in timing are smaller than a sampling period for detection and capture of the digital signal receiving the live host signal; sensing pulse timing variations in the received live host signal by comparison to a reference signal; and determining information in the sensed timing variations.
    Type: Application
    Filed: May 16, 2016
    Publication date: November 17, 2016
    Inventors: Andrew Kowalevicz, Thomas Borton, Michael C. Reese, Gary M. Graceffo
  • Publication number: 20160292634
    Abstract: A method for managing a product delivery process, according to one embodiment, includes: receiving status information from one or more product containers, wherein the status information includes conditions of each of the one or more product containers; determining preferred ranges for the conditions of each of the one or more product containers based on a product stored in each of the one or more product containers; determining whether the received conditions from the one or more product containers are within the preferred ranges; and sending a command in response to determining that at least one of the received conditions is outside the determined preferred range.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Inventors: Peter A. Mehring, Thomas C. Reese, Dean M. Kawaguchi, Sameer Dekate, Russell Shikami
  • Publication number: 20160276527
    Abstract: Lighting apparatus including a light emitting diode and a plurality of semiconductor structures. Each semiconductor structure includes a quantum dot comprising a nanocrystalline core comprising a first semiconductor material and a nanocrystalline shell comprising a second, different, semiconductor material at least partially surrounding the nanocrystalline core, the quantum dot having a photoluminescence quantum yield (PLQY) of at least 90%. An insulator layer encapsulates the quantum dot.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 22, 2016
    Inventors: Juanita N. KURTIN, Matthew J. CARILLO, Steven M. HUGHES, Brian THEOBALD, Colin C. REESE, Oun-Ho PARK, Georgeta MASSON
  • Patent number: 9352818
    Abstract: An outboard trolling marine motor assembly, conversion kit and method for converting a string trimmer into an outboard motor assembly. The assembly and kit featuring a propeller, a clamp assembly, a spacer and a mounting bracket. The propeller having a plurality of blades radially extending from a centrally located hub featuring a substantially centered non-circular recess. The propeller and spacer suitable for being mounted to a non-cylindrical prop-shaft. The clamp having a U-bolt with spaced apart threaded ends, fasteners and a block with a semi-circular slot and a plurality of apertures for receiving the ends of the U-bolt. Slot and U-bolt forming a substantially annular interior region. The mounting bracket having a pivotable body and at least one adjustable clamp for securing the motor assembly to a portion of a watercraft.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: May 31, 2016
    Inventor: Kenneth C. Reese
  • Publication number: 20150318982
    Abstract: A method for carrying data on a live host signal, comprising the steps of: varying timing in a host signal in response to data to be encoded, wherein variations in timing are smaller than a sampling period for detection and capture of the digital signal receiving the live host signal; sensing pulse timing variations in the received live host signal by comparison to a reference signal; and determining information in the sensed timing variations.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 5, 2015
    Inventors: Andrew M. Kowalevicz, Thomas Borton, Michael C. Reese, Gary M. Graceffo
  • Publication number: 20150225055
    Abstract: An outboard trolling marine motor assembly, conversion kit and method for converting a string trimmer into an outboard motor assembly. The assembly and kit featuring a propeller, a clamp assembly, a spacer and a mounting bracket. The propeller having a plurality of blades radially extending from a centrally located hub featuring a substantially centered non-circular recess. The propeller and spacer suitable for being mounted to a non-cylindrical prop-shaft. The clamp having a U-bolt with spaced apart threaded ends, fasteners and a block with a semi-circular slot and a plurality of apertures for receiving the ends of the U-bolt. Slot and U-bolt forming a substantially annular interior region. The mounting bracket having a pivotable body and at least one adjustable clamp for securing the motor assembly to a portion of a watercraft.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 13, 2015
    Inventor: Kenneth C. Reese
  • Publication number: 20130320298
    Abstract: A semiconductor structure comprises a nanocrystalline core of a first semiconductor material, a nanocrystalline shell of a second, different, semiconductor material at least partially surrounding the nanocrystalline core, and an insulator layer encapsulating the nanocrystalline shell and core, wherein an outer surface of the insulator layer is ligand-functionalized.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 5, 2013
    Inventors: Juanita N. KURTIN, Matthew J. CARILLO, Steven M. HUGHES, Brian THEOBALD, Colin C. REESE, Oun-Ho PARK, Georgeta MASSON
  • Publication number: 20130256633
    Abstract: Lighting apparatus including a light emitting diode and a plurality of semiconductor structures. Each semiconductor structure includes a quantum dot comprising a nanocrystalline core comprising a first semiconductor material and a nanocrystalline shell comprising a second, different, semiconductor material at least partially surrounding the nanocrystalline core, the quantum dot having a photoluminescence quantum yield (PLQY) of at least 90%. An insulator layer encapsulates the quantum dot.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Inventors: Juanita N. KURTIN, Matthew J. CARILLO, Steven M. HUGHES, Brian THEOBALD, Colin C. REESE, Oun-Ho PARK, Georgeta MASSON
  • Publication number: 20130206219
    Abstract: Photovoltaic cells (22) of different materials may be integrated at the network (20) or panel level to optimize independent and cooperative efficiencies and manufacturing techniques of the different materials. The sizes and numbers of the photovoltaic cells (22) in the separate photovoltaic networks (20) may differ. Separate fabrication of the different photovoltaic networks (20) permits optimization of an interlayer material (110), which can be insulating or noninsulating and can include one or more of light-scattering or light-emitting particles, photonic crystals, metallic materials, an optical grating, or a refractive index grading. For example, adaptations of increased emitter layer thickness, lower sheet resistance, increased gridline spacing, smoother photovoltaic material surface, and/or increased AR coating thickness are made to a multicrystalline silicon photovoltaic cell (20) for optimization as a bottom network (20b) of a tandem solar module.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 15, 2013
    Inventors: Juanita N. Kurtin, Alex R. Guichard, Alex C. Mayer, Shawn R. Scully, Steven M. Hughes, Oun-Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20120305860
    Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Application
    Filed: June 28, 2012
    Publication date: December 6, 2012
    Inventors: Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Alex C. Mayer, Oun Ho Park, Shawn R. Scully, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20120222723
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Application
    Filed: November 2, 2011
    Publication date: September 6, 2012
    Applicant: Spectrawatt, Inc.
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20110220194
    Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Application
    Filed: July 14, 2010
    Publication date: September 15, 2011
    Applicant: Spectrawatt, Inc.
    Inventors: Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Alex C. Mayer, Oun Ho Park, Shawn R. Scully, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20080134961
    Abstract: Patterned single crystals and related devices are facilitated. According to an example embodiment of the present invention, organic semiconducting single-crystals are manufactured using a plurality of surface regions on a substrate. The diffusivity and/or the rate of desorption is controlled at each surface region and at the substrate to grow at least one organic semiconducting single crystal at each surface region from a vapor-phase organic material. This control is effected, for example, before and/or during the introduction of vapor-phase organic material to the surface regions. In some embodiments, the surface regions include an organic film such as octadecyltriethoxysilane (OTS), and in other embodiments, the surface regions include carbon nanotube bundles, either of which can be implemented to exhibit a surface roughness and/or other characteristics that facilitate selective crystal nucleation.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 12, 2008
    Inventors: Zhenan Bao, Alejandro L. Briseno, Colin C. Reese, Stefan C. B. Mannsfeld, Shuhong Liu, Mang-Mang Ling
  • Publication number: 20070271308
    Abstract: Methods and apparatus are provided for managing the retention of information assets. In some embodiments, a system comprising an abstraction (e.g., provided as metadata) of the information assets stored in various information stores enables a user to manage the retention of the information assets. The system may, for example, provide screen interfaces which allow the user to define one or more information stores, one or more record classes into which the information assets should be categorized, and one or more schedules defining the retention of those assets. The user may execute queries to determine which information stores hold assets satisfying certain criteria.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 22, 2007
    Applicant: Iron Mountain Incorporated
    Inventors: R. Bentley, L. Labrie, C. Reese
  • Patent number: D532118
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: November 14, 2006
    Inventor: James C. Reese