Patents by Inventor César Jáuregui Misas

César Jáuregui Misas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200153190
    Abstract: The invention relates to a method for stably transmitting laser radiation through an optical waveguide (3), wherein two or more modes of the laser radiation propagating in the optical waveguide (3) interfere and form a mode interference pattern in the optical waveguide, as a result of which a thermally induced refractive index grating is produced in the optical waveguide (3). It is an object of the invention to demonstrate an effective approach for stabilizing the output signal of the optical waveguide (3) in a fiber-based laser/amplifier combination at high output powers, i.e. for avoiding mode instability. The invention achieves this object by virtue of the fact that a relative spatial phase shift between the mode interference pattern and the thermally induced refractive index grating is set in the direction of propagation of the laser radiation.
    Type: Application
    Filed: July 17, 2018
    Publication date: May 14, 2020
    Applicants: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V., Friedrich-Schiller-Universität Jena
    Inventors: Christoph STIHLER, César JÁUREGUI MISAS, Jens LIMPERT, Andreas TÜNNERMANN
  • Patent number: 10490969
    Abstract: A method of propagating a laser signal through an optical waveguide and a waveguide laser system provide a novel way of stabilizing the beam emitted by a fiber laser system above the mode instability threshold wherein the beat length of two or more interfering transverse modes of the laser signal in the optical waveguide is modulated in time.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: November 26, 2019
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V., Friedrich-Schiller-Universitaet Jena
    Inventors: Christoph Stihler, César Jáuregui Misas, Jens Limpert, Hans-Juergen Otto, Andreas Tuennermann, Fabian Stutzki
  • Patent number: 10340655
    Abstract: The invention relates to an optical waveguide (3) as a laser medium or as a gain medium for high-power operation, wherein the optical waveguide (3) is an optical fiber, the light-guiding core of which, at least in sections, is doped with rare earth ions. It is an object of the invention to provide an optical waveguide as a laser or a gain medium, and a laser/amplifier combination realized therewith, in which the output signal of the laser or gain medium is better stabilized. The invention achieves this object by virtue of the maximum small signal gain of the optical waveguide (1) being up to 60 dB, preferably up to 50 dB, more preferably up to 40 dB, even more preferably up to 30 dB, on account of the concentration of the rare earth ions and/or the distribution thereof in the light-guiding core. Moreover, the invention relates to the use of such an optical waveguide as an amplifier fiber (3) in a laser/amplifier combination.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: July 2, 2019
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITÄT
    Inventors: Hans Jurgen Otto, Cesar Jauregui Misas, Jens Limpert, Andreas Tunnermann
  • Patent number: 10281647
    Abstract: The invention relates to an optical waveguide with at least one core region (1) extending along the longitudinal extent of the optical waveguide, and with a first jacket (2) which, viewed in the cross section of the optical waveguide, surrounds the core region (1). The invention further relates to an optical arrangement with such an optical waveguide, and to a method for producing the optical waveguide. The object of the invention is to make available an optical waveguide for high-performance operation, which is improved in relation to the prior art in terms of mode instability. The invention achieves this object by virtue of the fact that the optical waveguide consists of crystalline material at least in the core region (1).
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: May 7, 2019
    Assignees: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V., Friedrich-Schiller-Universitat Jena
    Inventors: Cesar Jauregui Misas, Andreas Tunnermann, Jens Limpert, Christian Gaida
  • Publication number: 20180034234
    Abstract: The invention relates to an optical waveguide (3) as a laser medium or as a gain medium for high-power operation, wherein the optical waveguide (3) is an optical fiber, the light-guiding core of which, at least in sections, is doped with rare earth ions. It is an object of the invention to provide an optical waveguide as a laser or a gain medium, and a laser/amplifier combination realized therewith, in which the output signal of the laser or gain medium is better stabilized. The invention achieves this object by virtue of the maximum small signal gain of the optical waveguide (1) being up to 60 dB, preferably up to 50 dB, more preferably up to 40 dB, even more preferably up to 30 dB, on account of the concentration of the rare earth ions and/or the distribution thereof in the light-guiding core. Moreover, the invention relates to the use of such an optical waveguide as an amplifier fiber (3) in a laser/amplifier combination.
    Type: Application
    Filed: February 12, 2015
    Publication date: February 1, 2018
    Applicants: Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V., Friedrich-Schiller-Universität
    Inventors: Hans Jürgen OTTO, César JAUREGUI MISAS, Jens LIMPERT, Andreas TÜNNERMANN
  • Publication number: 20180019566
    Abstract: A method of propagating a laser signal through an optical waveguide and a waveguide laser system provide a novel way of stabilizing the beam emitted by a fiber laser system above the mode instability threshold wherein the beat length of two or more interfering transverse modes of the laser signal in the optical waveguide is modulated in time.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 18, 2018
    Applicants: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V., Friedrich-Schiller-Universitaet Jena
    Inventors: Christoph STIHLER, César JÁUREGUI MISAS, Jens LIMPERT, Hans-Juergen OTTO, Andreas TUENNERMANN, Fabian STUTZKI
  • Publication number: 20170302047
    Abstract: The invention relates to an optical waveguide with at least one core region (1) extending along the longitudinal extent of the optical waveguide, and with a first jacket (2) which, viewed in the cross section of the optical waveguide, surrounds the core region (1). The invention further relates to an optical arrangement with such an optical waveguide, and to a method for producing the optical waveguide. The object of the invention is to make available an optical waveguide for high-performance operation, which is improved in relation to the prior art in terms of mode instability. The invention achieves this object by virtue of the fact that the optical waveguide consists of crystalline material at least in the core region (1).
    Type: Application
    Filed: October 1, 2015
    Publication date: October 19, 2017
    Applicants: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V., Friedrich-Schiller-Universitat Jena
    Inventors: Cesar Jauregui Misas, Andreas Tunnermann, Jens Limpert, Christian Gaida
  • Patent number: 9459403
    Abstract: The invention relates to an apparatus for generating azimuthally or radially polarized radiation by means of an optical waveguide (1), wherein the optical waveguide (1) has a structure which is suitable for conducting azimuthally or radially polarized modes (5, 7). The invention proposes that the azimuthally or radially polarized modes (5, 7) in the optical waveguide (1) have different effective refractive indices and, within the optical waveguide (1), a narrow-band grating (2) is arranged, in particular a fiber Bragg grating (2) which is designed such that the spectral distance between two azimuthally or radially polarized resonant modes (5, 7) is equal to or greater than the associated spectral bandwidth.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: October 4, 2016
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Andreas Tuennermann, Christoph Jocher, César Jauregui Misas, Jens Limpert
  • Patent number: 9448359
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: September 20, 2016
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Limpert, Fabian Roeser, Tino Eidam, César Jáuregui Misas, Andreas Tuennermann
  • Publication number: 20160025924
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 28, 2016
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens LIMPERT, Fabian ROESER, Tino EIDAM, César JÁUREGUI MISAS, Andreas TUENNERMANN
  • Patent number: 9235106
    Abstract: The invention relates to a method and corresponding devices for reducing mode instability in an optical waveguide (1), a light signal becoming unstable in the optical waveguide (1) beyond an output power threshold and energy being transformed from a basic mode into higher order modes. The invention proposes a reduction in temperature variation (2) along the optical waveguide (1) and/or a reduction in changes in the optical waveguide (1) that are caused by spatial temperature variation as a result of mode interference.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: January 12, 2016
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V., FRIEDRICH-SCHILLER-UNIVERSITÄT JENA
    Inventors: César Jáuregui Misas, Hans-Jürgen Otto, Fabian Stutzki, Florian Jansen, Tino Eidam, Jens Limpert, Andreas Tünnermann
  • Patent number: 9170368
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 27, 2015
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens Limpert, Fabian Roeser, Tino Eidam, César Jáuregui Misas, Andreas Tuennermann
  • Patent number: 9065245
    Abstract: The invention relates to a double-sheath fiber having a core region (1) and a sheath region, the sheath region having an inner region (2) and an outer region (3), which comprises a refractive index that is lower with respect to that of the inner region (2) and the core region (1), wherein the outer region (3) surrounds the inner region (2). The invention proposes an internal structure (4) of the inner region (2) which effects a spatial overlap of modes of higher order with the core region (1), which is lower than the spatial overlap of a fundamental mode with the core region (1).
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 23, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: César Jauregui Misas, Fabian Stutzki, Jens Limpert, Florian Jansen, Andreas Tuennermann
  • Patent number: 9057928
    Abstract: The invention relates to an apparatus for generation of electromagnetic radiation, having a pump light source that emits an excitation radiation at a first wavelength, and having an optical waveguide that generates frequency-converted radiation at a second and a third wavelength, by means of degenerate wave mixing, from the excitation radiation of the pump light source.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: June 16, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: César Jauregui Misas, Andreas Tuennermann, Jens Limpert, Dirk Nodop
  • Publication number: 20150063767
    Abstract: The invention relates to a method and corresponding devices for reducing mode instability in an optical waveguide (1), a light signal becoming unstable in the optical waveguide (1) beyond an output power threshold and energy being transformed from a basic mode into higher order modes. The invention proposes a reduction in temperature variation (2) along the optical waveguide (1) and/or a reduction in changes in the optical waveguide (1) that are caused by spatial temperature variation as a result of mode interference.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 5, 2015
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V., FRIEDRICH-SCHILLER-UNIVERSITÄT JENA
    Inventors: César Jáuregui Misas, Hans-Jürgen Otto, Fabian Stutzki, Florian Jansen, Tino Eidam, Jens Limpert, Andreas Tünnermann
  • Patent number: 8891917
    Abstract: The invention relates to a transverse mode filter in an optical waveguide (3). The aim of the invention is to produce a transverse mode filter that permits a monolithic construction of a laser in a multi-mode waveguide. To achieve this, according to the invention the filter comprises a Fabry-Perot cavity integrated into the optical waveguide (3) and comprising two reflective elements (5) situated at a distance from one another. In addition, the waveguide (3) is modified in the region of the Fabry-Perot cavity and/or in the region of the reflective elements (5) in relation to the remaining regions of the waveguide with respect to the effective refractive index of at least one mode of the waveguide.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 18, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Ulrich Thomas, Christian Voigtlaender, Stefan Nolte, César Jáuregui Misas, Fabian Stutzki, Jens Limpert, Andreas Tuennermann
  • Publication number: 20140112612
    Abstract: The invention relates to an apparatus for generating azimuthally or radially polarized radiation by means of an optical waveguide (1), wherein the optical waveguide (1) has a structure which is suitable for conducting azimuthally or radially polarized modes (5, 7). The invention proposes that the azimuthally or radially polarized modes (5, 7) in the optical waveguide (1) have different effective refractive indices and, within the optical waveguide (1), a narrow-band grating (2) is arranged, in particular a fibre Bragg grating (2) which is designed such that the spectral distance between two azimuthally or radially polarized resonant modes (5, 7) is equal to or greater than the associated spectral bandwidth.
    Type: Application
    Filed: April 14, 2011
    Publication date: April 24, 2014
    Applicant: FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Andreas Tuennermann, Christoph Jocher, César Jauregui Misas, Jens Limpert
  • Publication number: 20140010246
    Abstract: The invention relates to a double-sheath fiber having a core region (1) and a sheath region, the sheath region having an inner region (2) and an outer region (3), which comprises a refractive index that is lower with respect to that of the inner region (2) and the core region (1), wherein the outer region (3) surrounds the inner region (2). The invention proposes an internal structure (4) of the inner region (2) which effects a spatial overlap of modes of higher order with the core region (1), which is lower than the spatial overlap of a fundamental mode with the core region (1).
    Type: Application
    Filed: November 22, 2011
    Publication date: January 9, 2014
    Applicants: Friedrich-Schiller-Universitaet Jena, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: César Jauregui Misas, Fabian Stutzki, Jens Limpert, Florian Jansen, Andreas Tuennermann
  • Publication number: 20140002890
    Abstract: The invention relates to an apparatus for generation of electromagnetic radiation, having a pump light source that emits an excitation radiation at a first wavelength, and having an optical waveguide that generates frequency-converted radiation at a second and a third wavelength, by means of degenerate wave mixing, from the excitation radiation of the pump light source.
    Type: Application
    Filed: December 19, 2011
    Publication date: January 2, 2014
    Applicants: FRIEDRICH-SCHILLER-UNIVERSITAET JENA, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: César Jauregui Misas, Andreas Tuennermann, Jens Limpert, Dirk Nodop
  • Publication number: 20120237162
    Abstract: The invention relates to a transverse mode filter in an optical waveguide (3). The aim of the invention is to produce a transverse mode filter that permits a monolithic construction of a laser in a multi-mode waveguide. To achieve this, according to the invention the filter comprises a Fabry-Perot cavity integrated into the optical waveguide (3) and comprising two reflective elements (5) situated at a distance from one another. In addition, the waveguide (3) is modified in the region of the Fabry-Perot cavity and/or in the region of the reflective elements (5) in relation to the remaining regions of the waveguide with respect to the effective refractive index of at least one mode of the waveguide.
    Type: Application
    Filed: September 15, 2010
    Publication date: September 20, 2012
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN, FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens Ulrich Thomas, Christian Voigtlaender, Stefan Nolte, César Jáuregui Misas, Fabian Stutzki, Jens Limpert, Andreas Tuennermann