Patents by Inventor C. Yoder

C. Yoder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140249296
    Abstract: Methods and reagents for the installation of click chemistry handles on target proteins are provided, as well as modified proteins comprising click chemistry handles. Further, chimeric proteins, for example, bi-specific antibodies, that comprise two proteins conjugated via click chemistry, as well as methods for their generation and use are disclosed herein.
    Type: Application
    Filed: June 28, 2012
    Publication date: September 4, 2014
    Applicant: Whitehead Institute for Biomedical Research
    Inventors: Hidde L Ploegh, Martin D. Witte, Nicholas C. Yoder
  • Patent number: 8813788
    Abstract: A fluid drainage system configured for draining a basin impounding fluid and sediment, solids or the like of varying density and turbidity. The system includes a first conduit and a second conduit within or adjacent to the first conduit to form a fluid receiving chamber between the first and second conduits, each conduit having apertures therethrough, with the apertures of the first and second conduits being sized and arranged relative to one another and so configured as to preferentially discharge fluid from the top of a basin, thus providing flow conditions which inhibit the entry of sediment into the system so as to maximize the retention of sediment within the basin and reduce turbidity and Total Suspended Sediment in the discharged fluid.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: August 26, 2014
    Assignee: University of Tennessee Research Foundation
    Inventors: John Tyner, Daniel C. Yoder, Brent S. Pilon
  • Publication number: 20140193473
    Abstract: Materials and methods are disclosed for controlling vasculogenesis using building blocks of a collagen matrix and endothelial colony forming cells (ECFC). The building blocks may be isolated by fractionating an acid soluble Type I collagen. The building blocks comprising monomers and/or oligomers may be recombined in desired ratios to alter the matrix microenvironment and to influence ECFC behavior.
    Type: Application
    Filed: June 6, 2012
    Publication date: July 10, 2014
    Applicant: Indiana University Research and Technology Corp.
    Inventors: Mervin C. Yoder, Paul Critser, Sherry Voytik-Harbin
  • Publication number: 20140008294
    Abstract: A fluid drainage system configured for draining a basin impounding fluid and sediment, solids or the like of varying density and turbidity. The system includes a first conduit and a second conduit within or adjacent to the first conduit to form a fluid receiving chamber between the first and second conduits, each conduit having apertures therethrough, with the apertures of the first and second conduits being sized and arranged relative to one another and so configured as to preferentially discharge fluid from the top of a basin, thus providing flow conditions which inhibit the entry of sediment into the system so as to maximize the retention of sediment within the basin and reduce turbidity and Total Suspended Sediment in the discharged fluid.
    Type: Application
    Filed: August 27, 2013
    Publication date: January 9, 2014
    Applicant: University of Tennessee Research Foundation
    Inventors: John TYNER, Daniel C. YODER, Brent S. PILON
  • Patent number: 8545696
    Abstract: A fluid drainage system configured for draining a basin impounding fluid and sediment, solids or the like of varying density and turbidity. The system includes a first conduit and a second conduit within or adjacent to the first conduit to form a fluid receiving chamber between the first and second conduits, each conduit having apertures therethrough, with the apertures of the first and second conduits being sized and arranged relative to one another and so configured as to preferentially discharge fluid from the top of a basin, thus providing flow conditions which inhibit the entry of sediment into the system so as to maximize the retention of sediment within the basin and reduce turbidity and Total Suspended Sediment in the discharged fluid.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: October 1, 2013
    Assignee: University of Tennessee Research Foundation
    Inventors: John Tyner, Daniel C. Yoder, Brent Pilon
  • Publication number: 20120031193
    Abstract: Structural health monitoring systems can be limited to a minimum number of sensors due to cost, complexity, and weight restrictions. Some embodiments described herein pertain to a load and damage identification techniques that utilize one sensor. Several passive force estimation techniques are presented. Some techniques use either the shape or the amplitude of the magnitude of the applied force in the frequency domain. Several techniques iteratively reduce an underdetermined set of equations of motion into many overdetermined systems of equations to solve for the force estimates. The techniques are shown to locate and quantify impulsive impacts with over 97% accuracy and non-impulsive impacts with at least 87% accuracy. Impacts not acting at a specific input degree of freedom are also accurately located depending on the distance away from the modeled input degrees of freedom, and damaging impact forces are quantified by making assumptions about the impulsive nature of the applied force.
    Type: Application
    Filed: April 1, 2010
    Publication date: February 9, 2012
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Douglas E. Adams, Nick A. Stites, Nathanael C. Yoder, Jonathan R. White
  • Publication number: 20110278212
    Abstract: A fluid drainage system configured for draining a basin impounding fluid and sediment, solids or the like of varying density and turbidity. The system includes a first conduit and a second conduit within or adjacent to the first conduit to form a fluid receiving chamber between the first and second conduits, each conduit having apertures therethrough, with the apertures of the first and second conduits being sized and arranged relative to one another and so configured as to preferentially discharge fluid from the top of a basin, thus providing flow conditions which inhibit the entry of sediment into the system so as to maximize the retention of sediment within the basin and reduce turbidity and Total Suspended Sediment in the discharged fluid.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 17, 2011
    Applicant: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: JOHN TYNER, Daniel C. Yoder, Brent Pilon
  • Patent number: 7754187
    Abstract: A method is disclosed of synthesizing a crystalline material comprising a CHA framework type molecular sieve and having a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to less than 0.01. The method comprises preparing a reaction mixture capable of forming said material, said mixture comprising a source of water, a source of an oxide of a tetravalent element Y and optionally a source of an oxide of a trivalent element X, wherein the reaction mixture is substantially free of fluoride ions added as HF; maintaining the reaction mixture under conditions sufficient to form crystals of the crystalline material; and than recovering the crystalline material. The reaction mixture comprises either a specific directing agent for directing the formation of a CHA framework type molecular sieve and/or a H2O:YO2 molar ratio of greater than 20.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: July 13, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld M. Mertens, Anil S. Guram, Hailian Li, Jeffrey C. Yoder
  • Patent number: 7670589
    Abstract: The synthesis of a crystalline material, in particular, a high silica zeolite, comprising a chabazite-type framework molecular sieve is conducted in the presence of an organic directing agent having the formula: [R1R2R3N—R4]+Q? wherein R1 and R2 are independently selected from hydrocarbyl groups and hydroxy-substituted hydrocarbyl groups having from 1 to 3 carbon atoms, provided that R1 and R2 may be joined to form a nitrogen-containing heterocyclic structure, R3 is an alkyl group having 2 to 4 carbon atoms and R4 is selected from a 4- to 8-membered cycloalkyl group, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms; and a 4- to 8-membered heterocyclic group having from 1 to 3 heteroatoms, said heterocyclic group being, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms and the or each heteroatom in said heterocyclic group being selected from the group consisting of O, N, and S, or R3 and R4 are hydrocarbyl groups having from 1 to 3 carbon a
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: March 2, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld Maria Mertens, Matu J. Shah, Marc H. Anthonis, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder, Anthony F. Volpe, Jr.
  • Publication number: 20090280180
    Abstract: Collagen based-matrices and methods of their use are described. More particularly, collagen-based matrices for differentiating stem cells and progenitor cells, and for producing and isolating blood vessels and vascularized graft constructs are described.
    Type: Application
    Filed: December 10, 2008
    Publication date: November 12, 2009
    Inventors: Sherry L. Voytik-Harbin, Seth Kreger, Mervin C. Yoder, Paul Critser
  • Patent number: 7550637
    Abstract: A selective hydrogenation catalyst composition comprises at least two different metal components selected from Groups 8 to 10 of the Periodic Table of Elements, one of which may be rhodium, and at least one metal component selected from Group 13 of the Periodic Table of Elements, such as indium.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: June 23, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder
  • Publication number: 20090111959
    Abstract: A crystalline material has a DDR framework type and, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element, Y is a tetravalent element and n is from 0 to less than 0.01 and wherein the crystals of said material have an average diameter less than or equal to 2 microns. The material is synthesized in the presence of an N-ethyltropanium compound as directing agent.
    Type: Application
    Filed: November 14, 2006
    Publication date: April 30, 2009
    Inventors: Guang Cao, Machteld Maria Mertens, Karl G. Strohmaier, Hailian Li, Robert J. Saxton, Anil S. Guram, Jeffrey C. Yoder, Mark T. Muraoka, Anthony F. Volpe, JR.
  • Patent number: 7462751
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: December 9, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder, Valery Sokolovskii
  • Publication number: 20080033218
    Abstract: This invention is directed to a process for making alcohol from syngas, and a process for making olefin, as well as polyolefin, from the alcohol. The syngas is converted to a mixed alcohol stream using a catalyst comprising at least one oxide component. Upon contacting the catalyst with a desired syngas composition, a preferred mixed alcohol product is formed. Preferably, the syngas composition has a stoichiometric molar ratio of less than 2.
    Type: Application
    Filed: June 20, 2007
    Publication date: February 7, 2008
    Inventors: James R. Lattner, Matthew James Vincent, Kun Wang, Michel Molinier, Michael J. Veraa, Anthony F. Volpe, Hailian Li, Jeffrey C. Yoder, Mark Muraoka
  • Patent number: 7220701
    Abstract: A selective hydrogenation catalyst composition comprises a rhodium component present in an amount such that the catalyst composition comprises less than 3.0% of rhodium by weight of the total catalyst composition; and an indium component present in an amount such that the catalyst composition comprises at least 0.3% and less than 5.0% of indium by weight of the total catalyst composition.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder
  • Patent number: 7220700
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder, Valery Sokolovskii
  • Patent number: 7094389
    Abstract: A crystalline material substantially free of framework phosphorus and comprising a CHA framework type molecular sieve with stacking faults or at least one intergrown phase of a CHA framework type molecular sieve and an AEI framework type molecular sieve, wherein said material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to about 0.5. The material exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 22, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld M. Mertens, Karl G. Strohmaier, Richard B. Hall, Thomas Herman Colle, Mobae Afeworki, Antonie J. Bons, Wilfried J. Mortier, Chris Kliewer, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder
  • Patent number: D719404
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: December 16, 2014
    Assignee: Keurig Green Mountain, Inc.
    Inventors: David Manly, Karen Gallagher, James E. Shepard, Michelle V. Stacy, Ben C. Yoder, Scott M. Vogel, Allison Cummings, Stephanie Simione, Steffen F. Koury, Paul K. Metaxatos, James T. McGee, Da Deng
  • Patent number: D720180
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: December 30, 2014
    Assignee: Keurig Green Mountain, Inc.
    Inventors: David Manly, Karen Gallagher, James E. Shepard, Michelle V. Stacy, Ben C. Yoder, Scott M. Vogel, Allison Cummings, Stephanie Simione, Steffen F. Koury, Paul K. Metaxatos, James T. McGee, Da Deng
  • Patent number: D721248
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: January 20, 2015
    Assignee: Keurig Green Mountain, Inc.
    Inventors: David Manly, Karen Gallagher, James E. Shepard, Michelle V. Stacy, Ben C. Yoder, Scott M. Vogel, Allison Cummings, Stephanie Simione, Steffen F. Koury, Paul K. Metaxatos, James T. McGee, Da Deng