Patents by Inventor Caglar Girit

Caglar Girit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230341880
    Abstract: Embodiments of the present disclosure provide a pixel circuitry, a drive method thereof, an array substrate and a display panel. The pixel circuitry includes circuits designated: drive CD, data write CDW, initialization CI, first light emission control CLEC1, first storage CS1, second storage CS2 and second light emission control CLEC2. CD connects to first through third nodes N1-N3 and provides drive current to a light emitting device. CDW connects to N1 and provides a data signal to CD according to a drive signal. CI provides an initialization signal to N2 according to a reset signal. CLEC1 provides a first voltage signal to N3 according to a first light emission control signal. CS1 and CS2 store a voltage difference between the first voltage signal terminal and N2, and N1 and N2, respectively. CLEC2 controls the drive current to the light emitting device according to a second light emission control signal.
    Type: Application
    Filed: September 17, 2021
    Publication date: October 26, 2023
    Inventors: Caglar GIRIT, Jean-Loup SMIRR
  • Patent number: 9105793
    Abstract: An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 11, 2015
    Assignee: The Regents of the University of California
    Inventors: Vincent Bouchiat, Caglar Girit, Brian Kessler, Alexander K. Zettl
  • Publication number: 20110179883
    Abstract: A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.
    Type: Application
    Filed: February 11, 2011
    Publication date: July 28, 2011
    Applicant: The Regents of the University of California
    Inventors: Alex K. Zettl, Kenneth J. Jensen, Caglar Girit, William E. Mickelson, Jeffrey C. Grossman
  • Publication number: 20110102068
    Abstract: An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Applicant: The Regents of the University of California
    Inventors: Vincent Bouchiat, Caglar Girit, Brian Kessler, Alexander K. Zettl
  • Patent number: 7915973
    Abstract: A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: March 29, 2011
    Assignee: The Regents of the University of California
    Inventors: Alex K. Zettl, Kenneth J. Jensen, Caglar Girit, William E. Mickelson, Jeffrey C. Grossman
  • Publication number: 20110006837
    Abstract: The present invention provides for a graphene device comprising: a first gate structure, a second gate structure that is transparent or semi-transparent, and a bilayer graphene coupled to the first and second gate structures, the bilayer graphene situated at least partially between the first and second gate structures. The present invention also provides for a method of investigating semiconductor properties of bilayer graphene and a method of operating the graphene device by producing a bandgap of at least 50 mV within the bilayer graphene by using the graphene device.
    Type: Application
    Filed: June 2, 2010
    Publication date: January 13, 2011
    Inventors: Feng Wang, Yuanbo Zhang, Tsung-ta Tang, Michael F. Crommie, Alexander K. Zettl, Caglar Girit
  • Publication number: 20090309676
    Abstract: A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.
    Type: Application
    Filed: August 25, 2006
    Publication date: December 17, 2009
    Inventors: Alex K. Zettl, Kenneth J. Jensen, Caglar Girit, William E. Mickelson, Jeffrey C. Grossman