Patents by Inventor Caixin ZHUANG

Caixin ZHUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11604265
    Abstract: In one embodiment, an imaging device includes a light-emitting device, a driving circuit, a return single-photon avalanche diode (SPAD) array and readout circuitry. The driving circuit generates a driving signal, and the light-emitting device generates an optical pulse based on the driving signal. The return SPAD array is configured to receive a first portion of the optical pulse that is reflected by an object in an image scene. The readout circuitry receives a signal indicative of the received first portion of the optical pulse, and a signal indicative of the driving signal, and determines a distance between the imaging device and the object based on a difference between a time of receiving the signal indicative of the received first portion of the optical pulse and a time of receiving the signal indicative of the driving signal.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: March 14, 2023
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventors: Caixin Zhuang, John Kevin Moore
  • Patent number: 11412590
    Abstract: A single photon avalanche diode based range detecting apparatus includes a reference array of single photon avalanche diodes configured to receive light from an illumination source via an internally coupled path. A return array of single photon avalanche diodes is configured to receive light from the illumination source via an external free space path. A calibration pulse generator is configured to generate a calibration signal pulse. Readout circuitry is configured to receive an output of the reference array via a reference signal path, an output of the return array via a return signal path, and an output of the calibration pulse generator via a calibration signal path. The readout circuitry is configured to determine a delay difference value between the reference signal path and the return signal path based on the output of the calibration pulse generator via the calibration signal path.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: August 9, 2022
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: John Kevin Moore, Caixin Zhuang
  • Publication number: 20210134943
    Abstract: A single photon avalanche diode based range detecting apparatus includes a reference array of single photon avalanche diodes configured to receive light from an illumination source via an internally coupled path. A return array of single photon avalanche diodes is configured to receive light from the illumination source via an external free space path. A calibration pulse generator is configured to generate a calibration signal pulse. Readout circuitry is configured to receive an output of the reference array via a reference signal path, an output of the return array via a return signal path, and an output of the calibration pulse generator via a calibration signal path. The readout circuitry is configured to determine a delay difference value between the reference signal path and the return signal path based on the output of the calibration pulse generator via the calibration signal path.
    Type: Application
    Filed: January 7, 2021
    Publication date: May 6, 2021
    Inventors: John Kevin Moore, Caixin Zhuang
  • Patent number: 10903313
    Abstract: A single photon avalanche diode based range detecting apparatus includes a reference array of single photon avalanche diodes configured to receive light from an illumination source via an internally coupled path. A return array of single photon avalanche diodes is configured to receive light from the illumination source via an external free space path. A calibration pulse generator is configured to generate a calibration signal pulse. Readout circuitry is configured to receive an output of the reference array via a reference signal path, an output of the return array via a return signal path, and an output of the calibration pulse generator via a calibration signal path. The readout circuitry is configured to determine a delay difference value between the reference signal path and the return signal path based on the output of the calibration pulse generator via the calibration signal path.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: January 26, 2021
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: John Kevin Moore, Caixin Zhuang
  • Publication number: 20200096620
    Abstract: In one embodiment, an imaging device includes a light-emitting device, a driving circuit, a return single-photon avalanche diode (SPAD) array and readout circuitry. The driving circuit generates a driving signal, and the light-emitting device generates an optical pulse based on the driving signal. The return SPAD array is configured to receive a first portion of the optical pulse that is reflected by an object in an image scene. The readout circuitry receives a signal indicative of the received first portion of the optical pulse, and a signal indicative of the driving signal, and determines a distance between the imaging device and the object based on a difference between a time of receiving the signal indicative of the received first portion of the optical pulse and a time of receiving the signal indicative of the driving signal.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Caixin ZHUANG, John Kevin MOORE
  • Patent number: 10495736
    Abstract: In one embodiment, an imaging device includes a light-emitting device, a driving circuit, a return single-photon avalanche diode (SPAD) array and readout circuitry. The driving circuit generates a driving signal, and the light-emitting device generates an optical pulse based on the driving signal. The return SPAD array is configured to receive a first portion of the optical pulse that is reflected by an object in an image scene. The readout circuitry receives a signal indicative of the received first portion of the optical pulse, and a signal indicative of the driving signal, and determines a distance between the imaging device and the object based on a difference between a time of receiving the signal indicative of the received first portion of the optical pulse and a time of receiving the signal indicative of the driving signal.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: December 3, 2019
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventors: Caixin Zhuang, John Kevin Moore
  • Patent number: 10110214
    Abstract: An embodiment circuit includes a first voltage-controlled delay line (VCDL), a second VCDL, and a first flip-flop. The first VCDL includes a first input terminal configured to receive a first input voltage, and a second input terminal configured to receive a clock signal. The second VCDL includes a first input terminal configured to receive a second input voltage, and a second input terminal configured to receive the clock signal. The first flip-flop includes a reset pin coupled to an output terminal of the first VCDL, and a clock pin coupled to an output terminal of the second VCDL.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: October 23, 2018
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventor: Caixin Zhuang
  • Publication number: 20180198440
    Abstract: An embodiment circuit includes a first voltage-controlled delay line (VCDL), a second VCDL, and a first flip-flop. The first VCDL includes a first input terminal configured to receive a first input voltage, and a second input terminal configured to receive a clock signal. The second VCDL includes a first input terminal configured to receive a second input voltage, and a second input terminal configured to receive the clock signal. The first flip-flop includes a reset pin coupled to an output terminal of the first VCDL, and a clock pin coupled to an output terminal of the second VCDL.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 12, 2018
    Inventor: Caixin Zhuang
  • Publication number: 20180102407
    Abstract: A single photon avalanche diode based range detecting apparatus includes a reference array of single photon avalanche diodes configured to receive light from an illumination source via an internally coupled path. A return array of single photon avalanche diodes is configured to receive light from the illumination source via an external free space path. A calibration pulse generator is configured to generate a calibration signal pulse. Readout circuitry is configured to receive an output of the reference array via a reference signal path, an output of the return array via a return signal path, and an output of the calibration pulse generator via a calibration signal path. The readout circuitry is configured to determine a delay difference value between the reference signal path and the return signal path based on the output of the calibration pulse generator via the calibration signal path.
    Type: Application
    Filed: June 30, 2017
    Publication date: April 12, 2018
    Inventors: John Kevin Moore, Caixin Zhuang
  • Publication number: 20180038945
    Abstract: One or more embodiments are directed to imaging devices and methods for determining a distance to a target object utilizing a single sensor array. One embodiment is directed to an imaging device that includes a light-emitting device, a driving circuit, a return single-photon avalanche diode (SPAD) array and readout circuitry. The driving circuit generates a driving signal, and the light-emitting device generates an optical pulse based on the driving signal. The return SPAD array is configured to receive a first portion of the optical pulse that is reflected by an object in an image scene. The readout circuitry receives a signal indicative of the received first portion of the optical pulse, and a signal indicative of the driving signal, and determines a distance between the imaging device and the object based on a difference between a time of receiving the signal indicative of the received first portion of the optical pulse and a time of receiving the signal indicative of the driving signal.
    Type: Application
    Filed: August 4, 2016
    Publication date: February 8, 2018
    Inventors: Caixin ZHUANG, John Kevin MOORE