Patents by Inventor Caleb A. Christensen

Caleb A. Christensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230370081
    Abstract: Methods and devices for processing a signal. The methods include supplying to a first modulator a first RF signal and a first optical signal, wherein the first modulator is configured to output a first output signal; generating a first intensity signal that is based on the first output signal, wherein the first intensity signal is further based on a first biasing parameter; and providing a first intensity signal to a first analog-to-digital converter (ADC) to create a first digital signal processable by a signal processing unit.
    Type: Application
    Filed: May 9, 2023
    Publication date: November 16, 2023
    Inventors: Caleb Christensen, A. Craig Beal, Mark Lucas, Michael LaGasse, Audrius Berzanskis
  • Patent number: 9581448
    Abstract: A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 28, 2017
    Assignee: MagiQ Technologies, Inc.
    Inventors: Caleb A Christensen, Anton Zavriyev
  • Patent number: 9506739
    Abstract: A method determines a distance with a specified accuracy. The method transmits to an interferometer a test signal oscillating with a test frequency and receives, in response to the transmitting, an interferometric signal formed by interfering the test signal with a delayed signal produced by delaying a copy of the test signal over the distance equal to a path length difference in the interferometer. The test frequency is varying such that the test signal oscillates with different values of the test frequency. The method determines at least two values of the test frequency corresponding to particular values of the interferometric signal by beating the test signal with a reference signal having a reference frequency, wherein a value of the reference frequency is an absolute value predetermined with the specified accuracy. The method determines the distance using the two values of the test frequency.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: November 29, 2016
    Assignee: MagiQ Technologies, Inc.
    Inventors: Caleb A Christensen, Anton Zavriyev, A. Craig Beal
  • Patent number: 9207339
    Abstract: Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: December 8, 2015
    Assignee: Magi-Q Technologies, Inc.
    Inventors: A Craig Beal, Malcolm E Cummings, Anton Zavriyev, Caleb A Christensen, Keun Lee
  • Publication number: 20150331109
    Abstract: A method determines a distance with a specified accuracy. The method transmits to an interferometer a test signal oscillating with a test frequency and receives, in response to the transmitting, an interferometric signal formed by interfering the test signal with a delayed signal produced by delaying a copy of the test signal over the distance equal to a path length difference in the interferometer. The test frequency is varying such that the test signal oscillates with different values of the test frequency. The method determines at least two values of the test frequency corresponding to particular values of the interferometric signal by beating the test signal with a reference signal having a reference frequency, wherein a value of the reference frequency is an absolute value predetermined with the specified accuracy. The method determines the distance using the two values of the test frequency.
    Type: Application
    Filed: December 21, 2013
    Publication date: November 19, 2015
    Inventors: Caleb A. Christensen, Anton Zavriyev, A. Craig Beal
  • Publication number: 20140320863
    Abstract: A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brullion Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Inventors: Caleb A. Christensen, Anton Zavriyev
  • Publication number: 20140202786
    Abstract: Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Inventors: A Craig Beal, Malcolm E. Cummings, Anton Zavriyev, Caleb A. Christensen, Keun Lee