Patents by Inventor Caleb T. Nelson

Caleb T. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940689
    Abstract: A light control film comprises a light input surface and a light output surface opposite the light input surface; alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface, wherein the absorptive regions comprise a core having a first concentration, C1, of a light absorbing material sandwiched between cladding layers having a second concentration, C2, of the light absorbing material, wherein C2<C1, and wherein the cores have an aspect ratio of at least 20.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: March 26, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Schmidt, Kevin W. Gotrik, Nicholas A. Johnson, Raymond J. Kenney, Caleb T. Nelson, Kenneth A. Epstein
  • Publication number: 20240050951
    Abstract: An article includes a flexible structured film with a first major surface and a second major surface, wherein a first major surface of the flexible structured film has a plurality of posts separated by land areas, and the posts have an exposed surface. An anti-biofouling layer resides in the land areas, and the anti-biofouling layer has a methylated surface. An inorganic layer is on the exposed surfaces of the posts, wherein the inorganic layer includes a metal or a metal oxide. An analyte binding layer is on the inorganic layer, wherein the analyte binding layer is chosen from a reactive silane, a functionalizable hydrogel, a functionalizable polymer, and mixtures and combinations thereof. An exposed surface of the analyte binding layer includes at least one functional group selected to bind with a biochemical analyte.
    Type: Application
    Filed: November 24, 2021
    Publication date: February 15, 2024
    Inventors: Henrik B. van Lengerich, Caleb T. Nelson, Kayla C. Niccum, Jeffrey L. Solomon, Paul B. Armstrong, Joshua M. Fishman, Tonya D. Bonilla, Phillip D. Hustad, David J. Tarnowski
  • Publication number: 20240045324
    Abstract: Methods of forming an array of patterns on a substrate are provided. An array of protective tiles formed from a protectant resin is provided to cover an array of sub-regions on the substrate. An array of patterns is formed on the substrate by sequentially repeating steps (i) and (ii) for each sub-region: (i) removing the protective tile from one of the sub-regions to expose the first major surface underneath; and (ii) forming a pattern on the exposed first major surface within the one of the sub-regions.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 8, 2024
    Inventors: Lucas J. Hunt, Ashley R. Sonnier, James Zhu, Edwin L. Kusilek, Paul B. Armstrong, William B. Kolb, Caleb T. Nelson, Jeffrey L. Solomon, James M. Nelson, Samuel R. Hei, David J. Tarnowski, Henrik B. van Lengerich
  • Publication number: 20240043989
    Abstract: Metallic nanohole (23) arrays on nanowells (22) with a controlled depth and methods of making and using the same are provided. A mesh pattern of metallic layer (8) having an array of nanoholes is provided on an array of nanowells, aligned with the openings of the respective nanowells. The aspect ratios (D:W) of the nanowells are controlled to control the deposition of metal into the nanowells.
    Type: Application
    Filed: December 28, 2021
    Publication date: February 8, 2024
    Inventors: Matthew R.D. Smith, David J. Tarnowski, Myungchan Kang, Caleb T. Nelson, Henrik B. van Lengerich, Christopher S. Lyons, Jeffrey L. Solomon, Bing Hao, Karl K. Stensvad
  • Patent number: 11885989
    Abstract: A light control film, comprises a light input surface and alight output surface opposite the light input surface. Alternating transmissive regions and absorptive regions are disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30 and the alternating transmissive region and absorptive regions have a relative transmission at a viewing angle of 0 degrees of at least 75%.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Schmidt, Caleb T. Nelson, Kevin W. Gotrik, Raymond J. Kenney, John A. Wheatley, Kenneth A. Epstein, Gary T. Boyd, Corey D. Balts
  • Publication number: 20240011975
    Abstract: An article includes a flexible carrier film with a first major surface having an array of structures, at least a portion of which include an inorganic layer and an analyte binding layer. The analyte binding is bonded to the inorganic layer via a network of hydrocarbon linking groups, and the analyte binding layer includes at least one functional group selected to bind with a biochemical analyte. Recessed features interspersed with the structures are free of the inorganic layer and the analyte binding layer.
    Type: Application
    Filed: September 8, 2021
    Publication date: January 11, 2024
    Inventors: Joshua M. Fishman, Paul B. Armstrong, Caleb T. Nelson, Kayla C. Niccum, Henrik B. van Lengerich, Tonya D. Bonilla, Karl K. Stensvad
  • Publication number: 20240004110
    Abstract: An optical article includes a waveguide and a structured film. The structured film includes a polymeric substrate, an etch stop layer disposed on the polymeric substrate, a structured layer including a plurality of engineered structures disposed on a side of the etch stop layer opposite the polymeric substrate, a planarizing backfill layer disposed over the plurality of engineered structures to define a substantially planar major surface of the planarizing backfill layer having a surface roughness Ra, and an adhesive layer disposed on the substantially planar surface of the planarizing backfill layer and bonding the structured film to the waveguide. A difference in index of refraction of the planarizing backfill layer and the structured layer is at least 0.25 for at least a first wavelength W1 in a range of 400 nm to 2500 nm. The adhesive layer has an average thickness ta where Ra<ta<¼W1.
    Type: Application
    Filed: December 15, 2021
    Publication date: January 4, 2024
    Inventors: Martin B. Wolk, Robert L. Brott, Kevin W. Gotrik, Christopher S. Lyons, Caleb T. Nelson, Vadim Savvateev, James M. Nelson, Craig R. Schardt, Jeffrey L. Solomon, Karl K. Stensvad
  • Publication number: 20240004282
    Abstract: A structured film for forming a pattern on a substrate includes a polymeric support layer, an adhesive layer, an etch resist layer disposed between the polymeric support layer and the adhesive layer, a structured resin layer disposed between the polymeric support layer and the etch resist layer, and one or more unstructured layers disposed between the etch resist layer and the adhesive layer. The structured resin layer has a structured major surface including a plurality of engineered structures. The etch resist layer at least partially fills spaces between adjacent engineered structures to substantially planarize the structured major surface. Methods of using the structured film to form a pattern on a substrate are described.
    Type: Application
    Filed: December 15, 2021
    Publication date: January 4, 2024
    Inventors: Martin B. Wolk, Robert L. Brott, Kevin W. Gotrik, Christopher S. Lyons, Caleb T. Nelson, Vadim Savvateev, James M. Nelson, Craig R. Schardt, Jeffrey L. Solomon, Karl K. Stensvad, Steven D. Theiss
  • Publication number: 20230393312
    Abstract: A light control film comprising a light input surface and a light output surface opposite the light input surface; alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface, wherein each absorptive region has an aspect ratio of at least 30, and wherein each transmissive region has a first refractive index; and a plurality of low index layers, wherein each low index layer is disposed between each transmissive region and an adjacent absorptive region, and wherein each low index layer has a second refractive index less than the first refractive index of each transmissive region.
    Type: Application
    Filed: October 18, 2021
    Publication date: December 7, 2023
    Inventors: Raymond J. Kenney, Tao Liu, Kevin W. Gotrik, Caleb T. Nelson, Nicholas A. Johnson, Daniel J. Schmidt
  • Patent number: 11828972
    Abstract: An optical system includes an extended illumination source configured to emit light from an extended emission surface thereof and a light redirecting layer disposed on the extended emission surface. The light redirecting layer has a structured major surface that includes a regular array of light redirecting structures, each light redirecting structure including a plurality of facets; and a plurality of discrete spaced apart window segments. The optical system includes a plurality of reflective segments where each reflective segment is disposed on a corresponding window segment. For substantially normally incident light, each reflective segment has a total: average optical reflectance of at least 30% in a visible wavelength range extending from about 420 nm to about 650 nm; and optical transmittance of at least 10% for at least one infrared wavelength in an infrared wavelength range extending from about 800 nm to about 1200 nm.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Tao Liu, Gary T. Boyd, David A. Rosen, Bharat R. Acharya, Kevin W. Gotrik, David J. Rowe, Caleb T. Nelson
  • Publication number: 20230285629
    Abstract: An article. The article includes more than 50 wt % collagen matrix, wherein the collagen matrix has a pH value from 2 to 6; wherein the article is a wound dressing.
    Type: Application
    Filed: August 3, 2021
    Publication date: September 14, 2023
    Inventors: Bryan A. Baker, Caleb T. Nelson, Steven P. Swanson
  • Publication number: 20230255831
    Abstract: An article. The article includes a nonwoven having a pH value from 2 to 6; wherein the article is a wound dressing.
    Type: Application
    Filed: August 3, 2021
    Publication date: August 17, 2023
    Inventors: Bryan A. Baker, Caleb T. Nelson, Steven P. Swanson
  • Publication number: 20230220172
    Abstract: Multilayer optical films including a substrate and at least a first layer overlaying a surface of the substrate, in which the at least first layer includes a (co)polymer obtained by polymerizing a polymerizable composition including a fluorinated coupling agent and at least one free-radically polymerizable monomer, oligomer, or mixture thereof. Processes for making multilayer optical films using the polymerizable compositions also are taught. Articles including the multilayer optical film also are disclosed, in which the article preferably is selected from a photovoltaic device, a display device, a solid-state lighting device, a sensor, a medical or biological diagnostic device, an electrochromic device, light control device, or a combination thereof.
    Type: Application
    Filed: April 28, 2021
    Publication date: July 13, 2023
    Inventors: Brandon R. Pietz, Christopher S. Lyons, Thomas P. Klun, Paul J. Homnick, Jonathan M. Ryss, Tarris A. Sveback, Caleb T. Nelson
  • Patent number: 11654664
    Abstract: A composite cooling film including a reflective nonporous inorganic-particle-filled organic polymeric layer, an ultra-violet-protective layer or layers, and an antisoiling layer.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: May 23, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy J. Hebrink, Milind B. Sabade, Laura R. Nereng, Caleb T. Nelson, James P. Burke, Vivian W. Jones
  • Publication number: 20230109003
    Abstract: A light control film comprises a light input surface and a light output surface opposite the light input surface; alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface, wherein the absorptive regions comprise a core having a first concentration, C1, of a light absorbing material sandwiched between cladding layers having a second concentration, C2, of the light absorbing material, wherein C2 < C1, and wherein the cores have an aspect ratio of at least 20.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Daniel J. Schmidt, Kevin W. Gotrik, Nicholas A. Johnson, Raymond J. Kenney, Caleb T. Nelson, Kenneth A. Epstein
  • Publication number: 20230028958
    Abstract: A light control film comprises a light input surface and a light output surface; alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface; and TIR cladding layers. The TIR cladding layer having a refractive index, nTIR. The transmissive regions alternate between high refractive index transmissive regions having a refractive index, n2, and low refractive index transmissive regions having a refractive index, n1. The absorptive regions comprise a core having a refractive index, ncore, adjacent an AR cladding layer; wherein n1<n2 and nTIR<n2. The TIR cladding layers are adjacent the high refractive index transmissive regions. The cores have an aspect ratio of at least 20. The high refractive index transmissive regions have a wall angle of 6 degrees or less.
    Type: Application
    Filed: December 18, 2020
    Publication date: January 26, 2023
    Inventors: Tao Liu, Nicholas A. Johnson, Raymond J. Kenney, Caleb T. Nelson, Daniel J. Schmidt
  • Publication number: 20230024412
    Abstract: The present disclosure provides a light control film and a method of manufacturing the same. The method includes providing a microstructured film. The microstructured film includes a plurality of light transmissive regions alternated with channels. The microstructure film is defined by a top surface and a pair of side surfaces of each light transmissive region and a bottom surface of each channel. The method further includes coating the pair of side surfaces of each light transmissive region and the bottom surface of each channel with a coating. The coating includes light absorbing particles that are dispersed in a liquid. The method further includes drying the coating such that the light absorbing particles are selectively deposited on the pair of sides surfaces of each light transmissive region.
    Type: Application
    Filed: December 17, 2020
    Publication date: January 26, 2023
    Inventors: James E. Lockridge, Kevin W. Gotrik, Raymond J. Kenney, Caleb T. Nelson, Daniel J. Schmidt, Riley J. Hillstrom
  • Publication number: 20230019944
    Abstract: A composite cooling film including a reflective nonporous inorganic-particle-filled organic polymeric layer, an ultra-violet-protective layer or layers, and an antisoiling layer.
    Type: Application
    Filed: January 13, 2021
    Publication date: January 19, 2023
    Inventors: Timothy J. Hebrink, Miland B. Sabade, Laura R. Nereng, Caleb T. Nelson, James P. Burke, Vivian W. Jones
  • Patent number: 11550183
    Abstract: A light control film comprises a light input surface and a light output surface opposite the light input surface; alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface, wherein the absorptive regions comprise a core having a first concentration, C1, of a light absorbing material sandwiched between cladding layers having a second concentration, C2, of the light absorbing material, wherein C2<C1, and wherein the cores have an aspect ratio of at least 20.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 10, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Daniel J. Schmidt, Kevin W. Gotrik, Nicholas A. Johnson, Raymond J. Kenney, Caleb T. Nelson, Kenneth A. Epstein
  • Publication number: 20220342126
    Abstract: A method of manufacturing an optical film includes providing a base film. The base film includes a substrate defining a first surface and a second surface. The base film also includes a plurality of structures defining an upper surface and at least one side surface extending from the corresponding upper surface to a base portion. The method also includes depositing a catalyst material on each of the plurality of structures and the base portion to form a catalyst layer thereon. The method further includes selectively removing the catalyst layer from the upper surface of each of the plurality of structures and the base portion while retaining an activity of the catalyst layer on the at least one side surface of each of the plurality of structures. The method includes forming a metallic layer on the at least one side surface of each of the plurality of structures.
    Type: Application
    Filed: August 28, 2020
    Publication date: October 27, 2022
    Inventors: Daniel M. Lentz, Kevin W. Gotrik, Jeremy K. Larsen, Caleb T. Nelson, Daniel J. Schmidt, Fei Peng