Patents by Inventor Calvin Leung

Calvin Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11682242
    Abstract: A vehicle safety system of a vehicle facilitates safe exigency ingress into a vehicle. The vehicle safety system may receive data associated with a condition of the vehicle (e.g., from sensors, components, remote signals, passenger input, etc.). Based at least in part on the data associated with the condition of the vehicle, the vehicle safety system may detect a triggering event associated with the ingress of a passenger compartment of the vehicle. Based at least in part on the triggering event, the vehicle safety system may perform a vehicular safety measure associated with ingress to the passenger compartment of the vehicle.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: June 20, 2023
    Assignee: Zoox, Inc.
    Inventors: Mohammed Imran Ali, Ari Goldberg, Koun Han, Jacob Avi Harper, Andrew Allen Haskin, Marina Camille Josephs, Michael Moshe Kohen, Devon Langston, Justin Calvin Leung, Mark R. Rosekind, Christopher John Stoffel
  • Patent number: 11591011
    Abstract: This application describes systems and techniques for adjusting one or more setting(s) of a vehicle based on detected condition(s) to avoid damage due to contact of the tires with a body, chassis, or other components of the vehicle. In some instances, the vehicle may determine a ride height of the vehicle, determine a limited range of steering angles based at least in part on the ride height, and control operation of the steering system of the vehicle based at least in part on the limited range of steering angles. In some instances, the vehicle may determine a steering angle of the vehicle, determine a limited range of ride heights based at least in part on the steering angle, and control operation of the suspension system of the vehicle based at least in part on the limited range of ride heights.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: February 28, 2023
    Assignee: Zoox, Inc.
    Inventors: Zachary Stuart Churukian, Johannes Edren, Justin Calvin Leung, Ahditya Melkote, David Evan Zlotnik
  • Patent number: 11009477
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: May 18, 2021
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 10905362
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: February 2, 2021
    Assignee: STMICROELECTRONICS PTE. LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung
  • Publication number: 20210000621
    Abstract: A sleeve for mounting a prosthetic unit on a limb is formed using a tripartite composite that includes a breathable woven fabric in combination with an elastic urethane middle layer and a soft perforated plastic inner layer. The middle layer can be a hyper-elastic polymer that is cured to a hemispherical shape to stretch and move while maintaining a shape memory that returns the polymer to its original shape once relieved of a stretching force. Moreover, the liner/prosthetic sleeve of the present invention's anatomical suspension works as an advantage to maintain its placement on the user's residual limb.
    Type: Application
    Filed: June 29, 2020
    Publication date: January 7, 2021
    Inventors: Calvin Leung, Nicole Escobar, Rae Jillian Ramiscal Rivera, Kimberly Antonio Ventura
  • Publication number: 20190261899
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Olivier LE NEEL, Suman CHERIAN, Calvin LEUNG
  • Publication number: 20190257780
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Inventors: Olivier LE NEEL, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 10317357
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 11, 2019
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 10299711
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: May 28, 2019
    Assignee: STMICROELECTRONICS PTE. LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung
  • Publication number: 20190025236
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 24, 2019
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 10094797
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: October 9, 2018
    Assignee: STMICROELECTRONICS PTE LTD.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Publication number: 20180140234
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Application
    Filed: January 17, 2018
    Publication date: May 24, 2018
    Inventors: Olivier LE NEEL, Suman CHERIAN, Calvin LEUNG
  • Patent number: 9918667
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 20, 2018
    Assignee: STMICROELECTRONICS PTE. LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung
  • Patent number: 9866658
    Abstract: SAS expanders are commonly used within a SAS network topology to allow multiple disk drives (targets) to connect to multiple host devices (initiators). A connection between an initiator and a target is setup inside an expander on the pathway between the initiator and the target. A source device sends a connection request message called an open address frame using in-band signaling. The expander processes the open address frame and forwards an modified open address frame to the next expander in the path or to the final destination device.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: January 9, 2018
    Assignee: MICROSEMI STORAGE SOLUTIONS, INC.
    Inventors: Cheng Yi, Heng Liao, Calvin Leung
  • Publication number: 20170261458
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 9689824
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: June 27, 2017
    Assignee: STMICROELECTRONICS PTE LTD.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 9651627
    Abstract: A device is provided for monitoring the total current discharged from a battery. The device includes a bridge circuit of resistors in which one of the resistors has a resistance which varies according to the current which has passed through it. Whenever the battery passes a current to a load, a small portion of the current is passed through the bridge circuit.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: May 16, 2017
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Calvin Leung
  • Publication number: 20170099371
    Abstract: SAS expanders are commonly used within a SAS network topology to allow multiple disk drives (targets) to connect to multiple host devices (initiators). A connection between an initiator and a target is setup inside an expander on the pathway between the initiator and the target. A source device sends a connection request message called an open address frame using in-band signaling. The expander processes the open address frame and forwards an modified open address frame to the next expander in the path or to the final destination device.
    Type: Application
    Filed: October 19, 2016
    Publication date: April 6, 2017
    Inventors: Cheng YI, Heng LIAO, Calvin LEUNG
  • Patent number: 9530681
    Abstract: An electronic device is formed by depositing polyimide on a glass substrate. A conductive material is deposited on the polyimide and patterned to form electrodes and signal traces. Remaining portions of the electronic device are formed on the polyimide. A second polyimide layer is then formed on the first polyimide layer. The glass substrate is then removed, exposing the electrodes and the top surface of the electronic device.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: December 27, 2016
    Assignee: STMICROELECTRONICS PTE. LTD.
    Inventors: Calvin Leung, Olivier Le Neel
  • Patent number: 9437798
    Abstract: A bio-fluid sensor is formed by depositing polyimide on a glass substrate. Gold and platinum are deposited on the polyimide and patterned to form fluid sensing electrodes, signal traces, and a temperature sensor. The fluid sensor is then fixed to a flexible tape and peeled off of the glass substrate.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: September 6, 2016
    Assignee: STMICROELECTRONICS PTE LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung, Ravi Shankar, Tien Choy Loh, Shian Yeu Kam