Patents by Inventor Calvin Sze

Calvin Sze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11033183
    Abstract: A new steerable endoscope for minimally invasive surgery is provided. The endoscope system includes: a wireless steerable endoscope (1), an external magnetic controller (2) and an image/video display (3). The wireless steerable endoscope (1) could be inserted through an incision (4-1) on the body skin (4) and be anchored/steered inside the body cavity by the external magnetic controller (2). It is shaftless, wireless, and can be steered inside the body, operating in a remote manner. Compared with existing endoscopes, it neither requires additional incision nor does it occupy trocar or port space. Without the endoscope shaft, the surgical access trauma and incision size can potentially be reduced, avoiding endoscope-instrument fencing. It can be placed remotely from the access incision, providing an improved and wider field of view. It is soft-bodied and compact in structure, therefore safety is high.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: June 15, 2021
    Assignee: The Chinese University of Hong Kong
    Inventors: Zheng Li, Calvin Sze Hang Ng, Philip Wai Yan Chiu, Joseph Jao Yiu Sung
  • Publication number: 20190159668
    Abstract: A new steerable endoscope for minimally invasive surgery is provided. The endoscope system includes: a wireless steerable endoscope (1), an external magnetic controller (2) and an image/video display (3). The wireless steerable endoscope (1) could be inserted through an incision (4-1) on the body skin (4) and be anchored/steered inside the body cavity by the external magnetic controller (2). It is shaftless, wireless, and can be steered inside the body, operating in a remote manner. Compared with existing endoscopes, it neither requires additional incision nor does it occupy trocar or port space. Without the endoscope shaft, the surgical access trauma and incision size can potentially be reduced, avoiding endoscope-instrument fencing. It can be placed remotely from the access incision, providing an improved and wider field of view. It is soft-bodied and compact in structure, therefore safety is high.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 30, 2019
    Inventors: Zheng Li, Calvin Sze Hang NG, Philip Wai Yan CHIU, Joseph Jao Yiu SUNG
  • Patent number: 8516471
    Abstract: Methods, systems, and products for detecting impact of operating system upgrades on software components. Embodiments detect the impact of differences between a current operating system and an upgraded operating system. The operating system is configured to provide a run-time environment. In one embodiment, a method comprises detecting a call from a software entity running on a first data processing system to the current operating system of the data processing system; recording the detected call in a data structure configured to contain one or more recorded calls; scanning the upgraded operating system on a second data processing system upon which the upgraded operating system is installed and running, before execution of the software entity in the run-time environment of the upgraded operating system, to identify the recorded calls in the data structure that are not supported by the upgraded operating system; and presenting an indication of the identified calls.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sagar Bhakta, James Tai Morris, Calvin Sze
  • Publication number: 20110083126
    Abstract: Methods, systems, and products for detecting impact of operating system upgrades on software components. Embodiments detect the impact of differences between a current operating system and an upgraded operating system. The operating system is configured to provide a run-time environment. In one embodiment, a method comprises detecting a call from a software entity running on a first data processing system to the current operating system of the data processing system; recording the detected call in a data structure configured to contain one or more recorded calls; scanning the upgraded operating system on a second data processing system upon which the upgraded operating system is installed and running, before execution of the software entity in the run-time environment of the upgraded operating system, to identify the recorded calls in the data structure that are not supported by the upgraded operating system; and presenting an indication of the identified calls.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 7, 2011
    Applicant: International Business Machines
    Inventors: Sagar Bhakta, James Tai Morris, Calvin Sze