Patents by Inventor Cameron D. McLain

Cameron D. McLain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903605
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 20, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11883059
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: January 30, 2024
    Assignee: Cilag GmbH International
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Brooks
  • Patent number: 11864820
    Abstract: Aspects of the present disclosure are presented for a single surgical instrument configured to grasp, seal, and/or cut tissue through application of therapeutic energy, and also detect nerves through application of non-therapeutic electrical energy. A medical device may include two jaws at an end effector, used to apply therapeutic energy and to perform surgical procedures. The therapeutic energy may be in the form of ultrasonic vibrations or higher voltage electrosurgical energy. One of the jaws may be configured to cut tissue through application of the blade. In addition, one or both of the two jaws may be configured to apply nontherapeutic energy for nerve stimulation probing. The application of therapeutic energy may be disabled while the nontherapeutic nerve stimulation energy is applied, and vice versa. The nontherapeutic nerve stimulation energy may be applied to the use of one or more probes positioned near one or both of the jaws.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: January 9, 2024
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: David C. Yates, Jeffrey D. Messerly, Cameron D. McLain, Peter K. Shires, Frederick L. Estera, Cameron R. Nott, Foster B. Stulen, Christopher A Papa
  • Publication number: 20240003820
    Abstract: A method of determining a recovery capacity of at least one feature of a surgical instrument includes establishing communication with the surgical instrument; assisting operation of the surgical instrument during a procedure; obtaining data related to the surgical instrument; evaluating the data obtained related to the surgical instrument to determine a digital assessment of the impact on performance of the at least one features of the surgical instrument; and determining, based on the digital assessment, a capacity of recovery for the at least one feature of the surgical instrument.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Matthew E. Derrico, Cameron D. McLain, Bruce Brunson, Gregory A. Trees
  • Publication number: 20240000491
    Abstract: A surgical kit includes a surgical instrument, a packaging, and a return packaging. The packaging defines an interior and an exterior in a closed configuration. The surgical instrument is disposed within the interior of the packaging or coupled with the packaging in the closed configuration. The packaging is configured to transition to an open configuration by a user to expose the interior and allow for access of the surgical instrument during a surgical procedure. The return packaging is configured to receive at least a portion of the surgical instrument after the surgical procedure for reduced cross-contamination. The return packaging is at least one of coupled with the packaging or disposed within the interior in the closed configuration.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Taylor W. Aronhalt, Cameron D. McLain, Nicholas J. Ross
  • Publication number: 20240000526
    Abstract: A robotic surgical system including a controller, a surgical instrument, and a tool. The surgical instrument is configured to interact with a patient. The surgical instrument is operatively coupled with the controller. The tool is operatively coupled with the robotic surgical system. The tool includes a disassembly feature. The disassembly feature of the tool is configured to disconnect at least a portion of the surgical instrument from the robotic surgical system in response to instructions from the controller.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Taylor W. Aronhalt, David A. Bruns, Matthew E. Derrico, Kevin M. Fiebig, Cameron D. McLain
  • Publication number: 20240000476
    Abstract: A surgical kit and related methods of assembly and disassembly include a surgical instrument having an end effector, a shaft assembly, and a body assembly. The surgical instrument includes a predetermined access portion configured to be at least partially removed for accessing an interior therein. The surgical kit also includes an instrument tool assembly with a tool body, a torque wrench connected to the tool body, and a removal portion for gaining access to the interior of the surgical instrument.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, Cameron D. McLain
  • Publication number: 20240006048
    Abstract: A method of reclaiming portions of a surgical kit having a surgical instrument includes disassembling the surgical instrument and determining a disposal methodology of the surgical kit. Furthermore, reclaiming further includes verifying reuse capacity of a portion of the surgical instrument and determining a waste stream for the portion of the surgical instrument. The method also includes disassembling the portion of the surgical instrument from a remainder of the surgical instrument at a predetermined region of the surgical instrument to thereby reclaim the portion of the surgical instrument according to the waste stream.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, David A. Bruns, Bruce Brunson, JR., Ellen Burkart, Robert N. Carranza, Matthew D. Cowperthwait, Aaron J. Chow, Matthew E. Derrico, Kevin M. Fiebig, Guion Y. Lucas, Cameron D. McLain, Joseph D. Paulowski, Cesar Perez, Nicholas J. Ross, Patrick J. Scoggins, Rebecca Spatholt, Gregory A. Trees
  • Patent number: 11712267
    Abstract: A depth limiter configured for use with a surgical cannula includes an annular base having a boss that extends about a longitudinal axis and has a boss lumen configured to receive the surgical cannula. A latch arm coupled with the annular base overlies the boss and includes an arm opening configured to align with the boss lumen to receive the surgical cannula. The latch arm is movable relative to the annular base between a release position and a lock position. In the release position the arm opening is positioned coaxially with the boss lumen such that the latch arm is configured to permit longitudinal movement of the depth limiter along the surgical cannula. In the lock position the arm opening is positioned non-coaxially with the boss lumen such that the latch arm is configured to inhibit longitudinal movement of the depth limiter along the surgical cannula.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: August 1, 2023
    Assignee: Cilag GmbH International
    Inventor: Cameron D. McLain
  • Publication number: 20230225760
    Abstract: A depth limiter that is configured to couple with a cannula of a surgical access device. The depth limiter includes first and second user contact portions and first and second biasing features. The first biasing feature includes a first resilient portion and a first gripping surface. The second biasing feature includes a second resilient portion and a second gripping surface. The first and second resilient portions are configured to move the respective first and second gripping surfaces from a fixed configuration to a movable configuration when the respective first and second user contact portions are actuated. In the fixed configuration, the first and second gripping surfaces collectively restrict axial movement of the depth limiter by directly contacting the cannula. In the movable configuration, the first and second gripping surfaces extend parallel to a longitudinal axis and allow for axial movement of the depth limiter relative to the cannula.
    Type: Application
    Filed: December 8, 2022
    Publication date: July 20, 2023
    Inventors: Arunachalam Muthuchidambaram, Arunkumar Radhakrishnan, Rushikesh Shrikant Suryawanshi, Dhivakar A, Cameron D. McLain, Lauren M. Valente, Matthew S. Corbin, Gregory G. Scott, Sajayesh Vijayachandran, Haribaskaran Nagarathinam, Giri Prasannakumar Mathivanan
  • Publication number: 20230128575
    Abstract: A surgical device, is disclosed herein. The surgical device can include an end effector including a clamp jaw, a trigger configured to open and close the clamp jaw, a sensor configured to detect a relative position of the trigger, and a control circuit communicably coupled to the sensor and a generator, wherein the control circuit is configured to cause the generator to administer energy associated with a surgical operation to be performed on the tissue, receive a signal from the sensor, determine that the clamp jaws are not positioned to administer the energy associated with the surgical operation, and cause the generator to administer energy configured to release the tissue from an ultrasonic blade, wherein the energy configured to release the tissue from the clamp jaw is different than the energy associated with a surgical operation to be performed on the tissue.
    Type: Application
    Filed: October 11, 2022
    Publication date: April 27, 2023
    Inventors: Jacob S. Gee, Michael A. Keenan, William A. Olson, Tyler N. Brehm, Cameron D. McLain, Kevin Price
  • Patent number: 11633211
    Abstract: A depth limiter that is configured to couple with a cannula of a surgical access device. The depth limiter includes first and second user contact portions and first and second biasing features. The first biasing feature includes a first resilient portion and a first gripping surface. The second biasing feature includes a second resilient portion and a second gripping surface. The first and second resilient portions are configured to move the respective first and second gripping surfaces from a fixed configuration to a movable configuration when the respective first and second user contact portions are actuated. In the fixed configuration, the first and second gripping surfaces collectively restrict axial movement of the depth limiter by directly contacting the cannula. In the movable configuration, the first and second gripping surfaces extend parallel to a longitudinal axis and allow for axial movement of the depth limiter relative to the cannula.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 25, 2023
    Assignee: Cilag GmbH International
    Inventors: Arunachalam Muthuchidambaram, Arunkumar Radhakrishnan, Rushikesh Shrikant Suryawanshi, Dhivakar A, Cameron D. McLain, Lauren Valente, Matthew S. Corbin, Gregory G. Scott, Sajayesh Vijayachandran, Haribaskaran Nagarathinam, Giri Prasannakumar Mathivanan
  • Publication number: 20210338283
    Abstract: A depth limiter configured for use with a surgical cannula includes an annular base having a boss that extends about a longitudinal axis and has a boss lumen configured to receive the surgical cannula. A latch arm coupled with the annular base overlies the boss and includes an arm opening configured to align with the boss lumen to receive the surgical cannula. The latch arm is movable relative to the annular base between a release position and a lock position. In the release position the arm opening is positioned coaxially with the boss lumen such that the latch arm is configured to permit longitudinal movement of the depth limiter along the surgical cannula. In the lock position the arm opening is positioned non-coaxially with the boss lumen such that the latch arm is configured to inhibit longitudinal movement of the depth limiter along the surgical cannula.
    Type: Application
    Filed: March 26, 2021
    Publication date: November 4, 2021
    Inventor: Cameron D. McLain
  • Publication number: 20210338272
    Abstract: A depth limiter that is configured to couple with a cannula of a surgical access device. The depth limiter includes first and second user contact portions and first and second biasing features. The first biasing feature includes a first resilient portion and a first gripping surface. The second biasing feature includes a second resilient portion and a second gripping surface. The first and second resilient portions are configured to move the respective first and second gripping surfaces from a fixed configuration to a movable configuration when the respective first and second user contact portions are actuated. In the fixed configuration, the first and second gripping surfaces collectively restrict axial movement of the depth limiter by directly contacting the cannula. In the movable configuration, the first and second gripping surfaces extend parallel to a longitudinal axis and allow for axial movement of the depth limiter relative to the cannula.
    Type: Application
    Filed: March 26, 2021
    Publication date: November 4, 2021
    Inventors: Arunachalam Muthuchidambaram, Arunkumar Radhakrishnan, Rushikesh Shrikant Suryawanshi, Dhivakar A, Cameron D. McLain, Lauren Valente, Matthew S. Corbin, Gregory G. Scott, Sajayesh Vijayachandran, Haribaskaran Nagarathinam, Giri Prasannakumar Mathivanan
  • Publication number: 20210338281
    Abstract: A depth limiter that is configured to couple with first and second trocar cannulas having different diameters. The depth limiter includes first and second body portions. First and second body portions each include first and second gripping surfaces. The first and second body portions are pivotably coupled together and are movable between an open configuration and a closed configuration. In the open configuration, the first and second body portions are configured to allow for axial movement of the depth limiter relative to the first and second trocar cannulas. The first gripping surfaces of the first and second body portions are configured to restrict axial movement of the depth limiter relative to the first trocar cannula in the closed configuration. The second gripping surfaces of the first and second body portions are configured to restrict axial movement of the depth limiter relative to the second trocar cannula in the closed configuration.
    Type: Application
    Filed: March 26, 2021
    Publication date: November 4, 2021
    Inventors: Joseph T. Mozloom, JR., Jeffery D. Bruns, Ryan W. McGhee, Cameron D. McLain, Lauren M. Valente, Matthew S. Corbin
  • Patent number: 11160578
    Abstract: An ultrasonic surgical instrument that includes an ultrasonic transducer, a handle assembly supporting the ultrasonic transducer, a clamp arm assembly, and a mechanical lockout assembly. The handle assembly includes a housing and an ultrasonic blade acoustically coupled with the ultrasonic transducer. The clamp arm assembly includes a clamp arm. The mechanical lockout assembly is configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the handle assembly and the clamp arm assembly are not completely coupled together and the operator is physically prevented from activating the instrument using an operator input feature. In the unlocked configuration, the clamp arm assembly and the shaft assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: November 2, 2021
    Assignee: Cilag GmbH International
    Inventors: John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Matthew T. Kuhn, Cameron D. McLain, Candice Otrembiak
  • Publication number: 20210259725
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, JR., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11076881
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 3, 2021
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Waters, Fajian Zhang
  • Publication number: 20210212720
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Application
    Filed: February 4, 2021
    Publication date: July 15, 2021
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Brooks
  • Patent number: 10945755
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 16, 2021
    Assignee: Ethicon LLC
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Waters