Patents by Inventor Camille Petit

Camille Petit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220260483
    Abstract: A method for monitoring the production of a material such as graphene in a liquid dispersion in real time, comprises supplying the liquid dispersion to a fluid gap defined between a first layer and an opposed second layer, wherein the first layer is light-transmissive and wherein the second layer has a diffusely reflective surface facing the first layer. The diffusely reflective surface is illuminated with light from a light source and light reflected from the diffusely reflective surface is detected at an associated photodetector. A light path from the light source to the photodetector comprises the light passing through the transmissive layer towards the diffusely reflective surface through the fluid gap, reflecting off the diffusely reflective surface and passing back through the fluid gap towards and onwards through the transmissive layer. The concentration of the material in the liquid dispersion can be determined from the detected reflected light.
    Type: Application
    Filed: July 27, 2020
    Publication date: August 18, 2022
    Applicant: Imperial College Innovations Limited
    Inventors: Camille Petit, Omar Matar, Jason Stafford
  • Publication number: 20200255294
    Abstract: The invention provides an apparatus for fluidic exfoliation of a layered material comprising: a housing of circular cross-section defined by a housing wall; a hollow rotor of circular cross-section having a first end and a second end and a wall positioned therebetween arranged concentrically within the housing, wherein the wall of the hollow rotor defines an inner chamber and the space in between the wall of the hollow rotor and the housing wall defines an outer chamber, and wherein a fluid flow path is provided between the inner chamber and the outer chamber; a fluid inlet in fluid communication with the inner chamber or the outer chamber; and a fluid outlet in fluid communication with the other of the inner chamber or the outer chamber; wherein the outer chamber has a width such that on passage of a fluid comprising the layered material from the inlet to the outlet through the outer chamber, a shear rate sufficient to exfoliate the layered material may be applied to the fluid comprising the layered material
    Type: Application
    Filed: July 31, 2018
    Publication date: August 13, 2020
    Inventors: Jason Stafford, Omar Matar, Camille Petit
  • Publication number: 20200206715
    Abstract: A method for producing a porous boron nitride material. The method comprises providing a mixture comprising a first nitrogen-containing organic compound, a second nitrogen-containing organic compound and a boron-containing compound. The method further comprises heating the mixture to cause thermal degradation of the mixture and form a porous boron nitride material.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 2, 2020
    Inventors: Camille PETIT, Sophia MARCHESINI
  • Patent number: 9662608
    Abstract: Methods and systems for capturing carbon dioxide and producing fuels such as alcohol using a solvent including a nanoparticle organic hybrid material and a secondary fluid are disclosed. In some embodiments, the methods include the following: providing a solvent including a nanoparticle organic hybrid material and a secondary fluid, the material being configured to capture carbon dioxide; introducing a gas including carbon dioxide to the solvent until the material is loaded with carbon dioxide; introducing at least one of catalysts for carbon dioxide reduction and a proton source to the solvent; heating the solvent including the material loaded with carbon dioxide until carbon dioxide loaded on the material is electrochemically converted to a fuel.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: May 30, 2017
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Ah-Hyung Alissa Park, Camille Petit, Youngjune Park, Kun-Yi Andrew Lin
  • Publication number: 20150014182
    Abstract: Methods and systems for capturing carbon dioxide and producing fuels such as alcohol using a solvent including a nanoparticle organic hybrid material and a secondary fluid are disclosed. In some embodiments, the methods include the following: providing a solvent including a nanoparticle organic hybrid material and a secondary fluid, the material being configured to capture carbon dioxide; introducing a gas including carbon dioxide to the solvent until the material is loaded with carbon dioxide; introducing at least one of catalysts for carbon dioxide reduction and a proton source to the solvent; heating the solvent including the material loaded with carbon dioxide until carbon dioxide loaded on the material is electrochemically converted to a fuel.
    Type: Application
    Filed: August 7, 2012
    Publication date: January 15, 2015
    Inventors: Ah-Hyung Alissa Park, Camille Petit, Youngjune Park, Kun-Yi Andrew Lin
  • Patent number: 8633331
    Abstract: The present invention relates to nanocomposite materials comprising: graphite-based material dispersed among transition metal-organic framework (MOF) units, wherein the graphite-based material is chemically linked to MOF units; wherein the graphite-based material is present in the range of about 5 wt. % to about 60 wt. % of the composite material.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 21, 2014
    Assignee: Research Foundation of the City University of New York
    Inventors: Teresa J. Bandosz, Camille Petit
  • Publication number: 20110217217
    Abstract: The present invention relates to nanocomposite materials comprising: graphite-based material dispersed among transition metal-organic framework (MOF) units, wherein the graphite-based material is chemically linked to MOF units; wherein the graphite-based material is present in the range of about 5 wt. % to about 60 wt. % of the composite material.
    Type: Application
    Filed: September 10, 2010
    Publication date: September 8, 2011
    Applicant: The Research Foundation of the City University of New York
    Inventors: Teresa J. Bandosz, Camille Petit