Patents by Inventor Can Bayram

Can Bayram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230238246
    Abstract: A wafer includes a buried substrate; a layer of silicon (100) disposed on the buried substrate and forming multiple U-shaped grooves, wherein each U-shaped groove comprises a bottom portion and silicon sidewalls (111) at an angle to the buried substrate; a buffer layer disposed within the multiple U-shaped grooves; and multiple gallium nitride (GaN)-based structures having vertical sidewalls disposed within and protruding above the multiple U-shaped grooves, the multiple GaN-based structures each including cubic gallium nitride (c-GaN) formed at merged growth fronts of hexagonal gallium nitride (h-GaN) that extend from the silicon sidewalls (111).
    Type: Application
    Filed: January 18, 2023
    Publication date: July 27, 2023
    Inventors: Can Bayram, Muhammad Ali Johar
  • Publication number: 20230235480
    Abstract: A wafer includes a buried substrate; a first layer of silicon (100) disposed on the buried substrate that includes silicon sidewalls (111) at an angle to the buried substrate and that form a bottom of each of multiple U-shaped grooves; a second layer of patterned oxide disposed on the silicon (100) that provides vertical sidewalls of each U-shaped groove formed within the first and second layers; a third layer of a buffer covering the first layer and partially covering the second layer partway up the vertical sidewalls; and multiple gallium nitride (GaN)-based structures disposed within the multiple U-shaped grooves, the multiple GaN-based structures each including cubic gallium nitride (c-GaN) formed at merged growth fronts of hexagonal gallium nitride (h-GaN) that extend from the silicon sidewalls (111).
    Type: Application
    Filed: January 18, 2023
    Publication date: July 27, 2023
    Inventors: Can Bayram, Muhammad Ali Johar
  • Patent number: 10957816
    Abstract: An electronic device includes a spreading layer and a first contact layer formed over and contacting the spreading layer. The first contact layer is formed from a thermally conductive crystalline material having a thermal conductivity greater than or equal to that of an active layer material. An active layer includes one or more III-nitride layers. A second contact layer is formed over the active layer, wherein the active layer is disposed vertically between the first and second contact layers to form a vertical thin film stack.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Can Bayram, Jack O. Chu, Christos Dimitrakopoulos, Jeehwan Kim, Hongsik Park, Devendra K. Sadana
  • Patent number: 10211328
    Abstract: A normally-off, heterojunction field effect transistor includes an intrinsic cubic-phase gallium nitride (c-GaN) substrate and an aluminum gallium nitride (AlGaN) capping layer disposed on the intrinsic c-GaN substrate. The AlGaN capping layer includes a first sublayer of intrinsic c-phase AlxGa1-xN disposed on the c-GaN substrate, wherein the first sublayer is of a first thickness; a second sublayer of doped c-phase AlxGa1-xN disposed on the first sublayer, and wherein the second sublayer is of a second thickness and is doped with a dopant. An insulating layer is disposed on the AlGaN capping layer, wherein the insulating layer is of a fourth thickness. A source electrode, a drain electrode, and a gate electrode are positioned adjacent to and on top of the insulating layer, respectively.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: February 19, 2019
    Assignee: Board of Trustees of the University of Illinois
    Inventors: Can Bayram, Ryan William Grady, Kihoon Park
  • Publication number: 20180315591
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Application
    Filed: June 21, 2018
    Publication date: November 1, 2018
    Inventors: Can Bayram, Christopher P. D'Emic, Devendra K. Sadana, Jeehwan Kim
  • Patent number: 10056251
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 21, 2018
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Christopher P. D'Emic, Devendra K. Sadana, Jeehwan Kim
  • Patent number: 10027086
    Abstract: A device including a non-polarization material includes a number of layers. A first layer of silicon (100) defines a U-shaped groove having a bottom portion (100) and silicon sidewalls (111) at an angle to the bottom portion (100). A second layer of a patterned dielectric on top of the silicon (100) defines vertical sidewalls of the U-shaped groove. A third layer of a buffer covers the first layer and the second layer. A fourth layer of gallium nitride is deposited on the buffer within the U-shaped groove, the fourth layer including cubic gallium nitride (c-GaN) formed at merged growth fronts of hexagonal gallium nitride (h-GaN) that extend from the silicon sidewalls (111), wherein a deposition thickness (h) of the gallium nitride above the first layer of silicon (100) is such that the c-GaN completely covers the h-GaN between the vertical sidewalls.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: July 17, 2018
    Assignee: Board of Trustees of the University of Illinois
    Inventors: Can Bayram, Richard Liu
  • Publication number: 20180083133
    Abstract: A normally-off, heterojunction field effect transistor includes an intrinsic cubic-phase gallium nitride (c-GaN) substrate and an aluminum gallium nitride (AlGaN) capping layer disposed on the intrinsic c-GaN substrate. The AlGaN capping layer includes a first sublayer of intrinsic c-phase AlxGa1-xN disposed on the c-GaN substrate, wherein the first sublayer is of a first thickness; a second sublayer of doped c-phase AlxGa1-xN disposed on the first sublayer, and wherein the second sublayer is of a second thickness and is doped with a dopant. An insulating layer is disposed on the AlGaN capping layer, wherein the insulating layer is of a fourth thickness. A source electrode, a drain electrode, and a gate electrode are positioned adjacent to and on top of the insulating layer, respectively.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 22, 2018
    Inventors: Can Bayram, Ryan William Grady, Kihoon Park
  • Patent number: 9865769
    Abstract: A method of forming, and corresponding structure, of an LED device where an LED and the contacts for the device are formed on a surface of the substrate, and the substrate is spalled just below the surface of the substrate.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Stephen W. Bedell, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Publication number: 20170310076
    Abstract: A device including a non-polarization material includes a number of layers. A first layer of silicon (100) defines a U-shaped groove having a bottom portion (100) and silicon sidewalls (111) at an angle to the bottom portion (100). A second layer of a patterned dielectric on top of the silicon (100) defines vertical sidewalls of the U-shaped groove. A third layer of a buffer covers the first layer and the second layer. A fourth layer of gallium nitride is deposited on the buffer within the U-shaped groove, the fourth layer including cubic gallium nitride (c-GaN) formed at merged growth fronts of hexagonal gallium nitride (h-GaN) that extend from the silicon sidewalls (111), wherein a deposition thickness (h) of the gallium nitride above the first layer of silicon (100) is such that the c-GaN completely covers the h-GaN between the vertical sidewalls.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 26, 2017
    Inventors: Can Bayram, Richard Liu
  • Patent number: 9660069
    Abstract: A method of forming a structure that can be used to integrate Si-based devices, i.e., nFETs and pFETs, with Group III nitride-based devices is provided. The method includes providing a substrate containing an nFET device region, a pFET device region and a Group III nitride device region, wherein the substrate includes a topmost silicon layer and a <111> silicon layer located beneath the topmost silicon layer. Next, a trench is formed within the Group III nitride device region to expose a sub-surface of the <111> silicon layer. The trench is then partially filled with a Group III nitride base material, wherein the Group III nitride material base material has a topmost surface that is coplanar with, or below, a topmost surface of the topmost silicon layer.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 23, 2017
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Christopher Peter D'Emic, William J. Gallagher, Effendi Leobandung, Devendra K. Sadana
  • Publication number: 20170092483
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Inventors: Can Bayram, Christopher P. D'Emic, Devendra K. Sadana, Jeehwan Kim
  • Patent number: 9608160
    Abstract: After forming patterned dielectric material structures over a (100) silicon substrate, portions of the silicon substrate that are not covered by the patterned dielectric material structures are removed to provide a plurality of openings within the silicon substrate. Each opening exposes a surface of the silicon substrate having a (111) crystalline plane. A buffer layer is then formed on the exposed surfaces of the patterned dielectric material structures and the silicon substrate. A dual phase Group III nitride structure including a cubic phase region is formed filling a space between each neighboring pair of the patterned dielectric material structures and one of the openings located beneath the space. Finally, at least one Group III nitride layer is epitaxially deposited over the cubic phase region of the dual phase Group III nitride structure.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: March 28, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Can Bayram, Cheng-Wei Cheng, Tayfun Gokmen, Ning Li, John A. Ott, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 9601583
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: March 21, 2017
    Assignee: ARMONK BUSINESS MACHINES CORPORATION
    Inventors: Can Bayram, Christopher P. D'Emic, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 9574287
    Abstract: A method of forming an epitaxial semiconductor material that includes forming a graphene layer on a semiconductor and carbon containing substrate and depositing a metal containing monolayer on the graphene layer. An epitaxial layer of a gallium containing material is formed on the metal containing monolayer. A layered stack of the metal containing monolayer and the epitaxial layer of gallium containing material is cleaved from the graphene layer that is present on the semiconductor and carbon containing substrate.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Can Bayram, Christos D. Dimitrakopoulos, Keith E. Fogel, Jeehwan Kim, John A. Ott, Devendra K. Sadana
  • Patent number: 9564526
    Abstract: A method of forming a structure that can be used to integrate Si-based devices, i.e., nFETs and pFETs, with Group III nitride-based devices is provided. The method includes providing a substrate containing an nFET device region, a pFET device region and a Group III nitride device region, wherein the substrate includes a topmost silicon layer and a <111> silicon layer located beneath the topmost silicon layer. Next, a trench is formed within the Group III nitride device region to expose a sub-surface of the <111> silicon layer. The trench is then partially filled with a Group III nitride base material, wherein the Group III nitride material base material has a topmost surface that is coplanar with, or below, a topmost surface of the topmost silicon layer.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Christopher Peter D'Emic, William J. Gallagher, Effendi Leobandung, Devendra K. Sadana
  • Publication number: 20160284930
    Abstract: A method of forming, and corresponding structure, of an LED device where an LED and the contacts for the device are formed on a surface of the substrate, and the substrate is spalled just below the surface of the substrate.
    Type: Application
    Filed: March 23, 2015
    Publication date: September 29, 2016
    Inventors: Can Bayram, Stephen W. Bedell, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Publication number: 20160284832
    Abstract: A method of forming a structure that can be used to integrate Si-based devices, i.e., nFETs and pFETs, with Group III nitride-based devices is provided. The method includes providing a substrate containing an nFET device region, a pFET device region and a Group III nitride device region, wherein the substrate includes a topmost silicon layer and a <111> silicon layer located beneath the topmost silicon layer. Next, a trench is formed within the Group III nitride device region to expose a sub-surface of the <111> silicon layer. The trench is then partially filled with a Group III nitride base material, wherein the Group III nitride material base material has a topmost surface that is coplanar with, or below, a topmost surface of the topmost silicon layer.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Can Bayram, Christopher Peter D'Emic, William J. Gallagher, Effendi Leobandung, Devendra K. Sadana
  • Publication number: 20160233244
    Abstract: A method of forming a structure that can be used to integrate Si-based devices, i.e., nFETs and pFETs, with Group III nitride-based devices is provided. The method includes providing a substrate containing an nFET device region, a pFET device region and a Group III nitride device region, wherein the substrate includes a topmost silicon layer and a <111> silicon layer located beneath the topmost silicon layer. Next, a trench is formed within the Group III nitride device region to expose a sub-surface of the <111> silicon layer. The trench is then partially filled with a Group III nitride base material, wherein the Group III nitride material base material has a topmost surface that is coplanar with, or below, a topmost surface of the topmost silicon layer.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Can Bayram, Christopher Peter D'Emic, William J. Gallagher, Effendi Leobandung, Devendra K. Sadana
  • Patent number: 9391144
    Abstract: A semiconductor structure including a (100) silicon substrate having a plurality openings located within the silicon substrate, wherein each opening exposes a surface of the silicon substrate having a (111) crystal plane. This structure further includes an epitaxial semiconductor material located on an uppermost surface of the (100) silicon substrate, and a gallium nitride material located adjacent to the surface of the silicon substrate having the (111) crystal plane and adjacent a portion of the epitaxial semiconductor material. The structure also includes at least one semiconductor device located upon and within the gallium nitride material and at least one other semiconductor device located upon and within the epitaxial semiconductor material.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: July 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Can Bayram, Cheng-Wei Cheng, Devendra K. Sadana, Kuen-Ting Shiu