Patents by Inventor Can Cinbis

Can Cinbis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120035490
    Abstract: An implantable medical device system and associated method monitor changes in transimpedance in a body tissue due to changes in cardiac pulsatility. A first dipole is used to deliver a non-stimulating electrical current. The first dipole includes a first electrode and a second electrode adapted to be deployed along a first body location. A second dipole is used to measure a voltage resulting from the non-stimulating electrical current being conducted through a portion of a patient's body. The second dipole includes a third electrode and a fourth electrode different than the first electrode and the second electrode and adapted to be deployed along a second body location spaced apart from the first body location.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Inventors: Xiaonan Shen, Can Cinbis
  • Patent number: 8090432
    Abstract: A medical device for sensing cardiac events that includes a plurality of electrodes sensing cardiac signals utilized to identify a cardiac event, a plurality of light sources capable of emitting light at a plurality of wavelengths, and a detector to detect the emitted light. A processor determines a plurality of light measurements in response to the emitted light detected by the detector, an isobestic blood volume index in response to determined light measurements of the plurality of light measurements from a first light source of the plurality of light sources emitting light at an isobestic wavelength, determines an oxygen index associated with light measurements of the plurality of light measurements from a light source of the plurality of light sources other than the first light source, and verifies the identifying of the cardiac event in response to the determined isobestic blood volume index and the determined oxygen index.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: January 3, 2012
    Assignee: Medtronic, Inc.
    Inventors: Can Cinbis, James K. Carney
  • Patent number: 8038626
    Abstract: A medical device system for sensing cardiac events that includes a plurality of electrodes sensing cardiac signals utilized to identify a cardiac event, a plurality of light sources capable of emitting light at a plurality of wavelengths, and a detector to detect the emitted light. A processor determines a plurality of light measurements in response to the emitted light detected by the detector, determines changes in perfusion in response to first changes in the plurality of light measurements in a direction indicative of a decrease in blood oxygenation and second changes in a direction indicative of a decrease in blood volume, and adjusts delivery of therapy by the device in response to the determined loss of perfusion.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 18, 2011
    Assignee: Medtronic, Inc.
    Inventors: Can Cinbis, James K. Carney
  • Publication number: 20110190610
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. The arrangement of an opto-electronic component within an optical sensor receive module is improved by masking the receive module lens with an opaque member to create a masked lens leading edge that is aligned with a leading edge of the opto-electronic component.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 4, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Publication number: 20110190608
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. The size of at least one of emit and receive module lenses of an optical sensor, and the offset between the opto-electronic component and the respective lens of at least one of emit and receive modules is decreased to increase amplitude of the signal received by the receive module from the emit module.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 4, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Publication number: 20110190624
    Abstract: A system and method for identifying the location of a medical device within a patient's body may be used to localize the fossa ovalis for trans-septal procedures. The systems and methods measure light reflected by tissues encountered by an optical array. An optical array detects characteristic wavelengths of tissues that are different distances from the optical array. The reflectance of different wavelengths of light at different distances from an optical array may be used to identify the types of tissue encountered, including oxygenated blood in the left atrium as detected from the right atrium through the fossa ovalis.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: MEDTRONIC ABLATION FRONTIERS LLC
    Inventors: Can CINBIS, Xiaonan SHEN, Jonathan KUHN
  • Publication number: 20110190609
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. An optical sensor connected to a housing of a medical device includes a circuit board, an opto-electronic component, a wall, a lens, and a ferrule. The circuit board is arranged within the housing. The opto-electronic component is mounted on a surface of the circuit board. The wall protrudes from the surface of the circuit board and surrounds the opto-electronic component. The lens is offset from the surface of the circuit board. The ferrule is connected to the housing, the lens and the wall. An inner surface of the wall mates with an outer surface of the ferrule.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 4, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Publication number: 20110166464
    Abstract: A physiological monitoring or therapy delivery system includes autonomous, wirelessly linked, implantable devices located at different areas to sense physiologic signals and deliver therapy. At least one of the implantable devices can trigger synchronized action (e.g. data capture or therapy delivery) by other implantable devices via a telemetry link.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Inventors: Brian B. Lee, Eric J. Panken, Can Cinbis, Gerard J. Hill, John J. Grevious
  • Publication number: 20110160801
    Abstract: A system and method are described for delivering an implantable medical device in a patient and through a catheter. The delivery catheter comprises telemetry means for communicatively coupling the implantable medical device with an external instrumentation during implantation.
    Type: Application
    Filed: March 26, 2010
    Publication date: June 30, 2011
    Inventors: H. Toby Markowitz, Can Cinbis
  • Publication number: 20110160557
    Abstract: A system and method are described for testing communication through a patient during implantation using telemetry coupling electrodes on a delivery catheter. In one example, at least two telemetry coupling electrodes may be placed on or within a delivery catheter to test conductive communication with external body electrodes during implantation. In some instances, the telemetry coupling electrodes of the delivery catheter may approximate the spacing of telemetry electrodes on an IMD. In this manner, testing conductively coupled communication with telemetry coupling electrodes of the catheter may be used to mimic the telemetry electrodes on the IMD and determine a target position and/or orientation of an electrode or electrodes of the IMD for successful conductive communication through the body.
    Type: Application
    Filed: March 26, 2010
    Publication date: June 30, 2011
    Inventors: Can Cinbis, H. Toby Markowitz
  • Patent number: 7912537
    Abstract: A physiological monitoring or therapy delivery system includes autonomous, wirelessly linked, implantable devices located at different areas to sense physiologic signals and deliver therapy. At least one of the implantable devices can trigger synchronized action (e.g. data capture or therapy delivery) by other implantable devices via a telemetry link.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 22, 2011
    Assignee: Medtronic, Inc.
    Inventors: Brian B. Lee, Eric J. Panken, Can Cinbis, Gerard J. Hill, John J. Grevious
  • Publication number: 20110066204
    Abstract: A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a therapy delivery module coupled to the electrode to deliver a therapy via the electrode in response to the sensed cardiac signals, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy; and a controller coupled to the therapy delivery module and the sensor, the controller configured to determine a tissue oxygenation measurement in response to the output signal, and determine whether the delivered therapy was successful in restoring cardiac hemodynamic function in response to the tissue oxygenation measurement.
    Type: Application
    Filed: July 29, 2010
    Publication date: March 17, 2011
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, William J. Havel
  • Publication number: 20110066198
    Abstract: A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a therapy delivery module coupled to the electrode to deliver a therapy via the electrode in response to the sensed cardiac signals, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the optical sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, and determine whether the delivered therapy restored cardiac hemodynamic function in response to the determined tissue oxygenation trend.
    Type: Application
    Filed: July 29, 2010
    Publication date: March 17, 2011
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, William J. Havel
  • Publication number: 20110066206
    Abstract: A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a monitoring module detecting a cardiac event in response to the sensed cardiac signals using first detection criteria, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the monitoring module, the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, determine a recovery index in response to the determined tissue oxygenation trend, and control one or both of detecting a cardiac event by the monitoring module and delivery of therapy by the therapy deliver
    Type: Application
    Filed: July 29, 2010
    Publication date: March 17, 2011
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, William J. Havel
  • Publication number: 20100317946
    Abstract: An implantable medical device for detecting and treating an arrhythmia includes an optical sensor adapted for positioning adjacent to a blood-perfused tissue volume. In one embodiment for controlling arrhythmia therapies delivered by the device, the optical sensor is controlled to emit light in response to detecting an arrhythmia, detect light scattered by the volume of blood perfused tissue including measuring an optical sensor output signal corresponding to the intensity of scattered light for at least four spaced-apart wavelengths, and compute a volume-independent measure of tissue oxygen saturation from the detected light. The hemodynamic status of the arrhythmia is detected in response to the measure of tissue oxygen saturation.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, James K. Carney
  • Publication number: 20100317939
    Abstract: A method and medical device for detecting signals that detects emitted light scattered by a volume of tissue delivered along a first pathway and a second pathway different from the first pathway, detects emitted light scattered by a volume of tissue delivered along a third pathway and a fourth pathway different from the third pathway, determines a first uniformity corresponding to the emitted light detected along the first pathway and the second pathway, determines a second uniformity corresponding to the emitted light detected along third pathway and the fourth pathway, determines a total uniformity in response to the determined first uniformity and the determined second uniformity, and alters sensing by the device in response to the determined total uniformity.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Jonathan L. Kuhn, Can Cinbis, James K. Carney
  • Publication number: 20100317947
    Abstract: A medical device system and associated method control the delivery of a therapy to a patient. The system includes an activity sensor and detects a change in activity level of the patient. The system further include an optical sensor to sense signal corresponding to tissue light attenuation. The system computes a tissue oxygenation measurement in response to detecting a change in activity level. A parameter controlling delivery of the therapy is adjusted in response to detecting the decreased tissue oxygenation.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Can Cinbis, James K. Carney, Jonathan L. Kuhn, David A. Anderson
  • Publication number: 20100318149
    Abstract: An implantable medical device that includes an optical sensor for providing a signal corresponding to light attenuation by a volume of blood perfused tissue, a control module coupled to the optical sensor controlling the light emitted by the optical sensor, a monitoring module receiving an optical sensor output signal and measuring light attenuation, a tissue electrode for stimulating the volume of blood perfused tissue, a pulse generator coupled to the tissue electrode for delivering electrical stimulation to the volume of blood-perfused tissue, and a processor coupled to the cardiac electrode and the monitoring module and configured to detect an arrhythmia in response to the depolarization signals, compute a tissue oxygenation measurement and control the pulse generator to deliver electrical stimulation to the volume of blood-perfused tissue in response to detecting the arrhythmia, and detect a hemodynamic status of the arrhythmia in response to at least one of a detected rate of tissue oxygenation decline
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, James K. Carney
  • Publication number: 20100317938
    Abstract: A method and medical device for detecting signals that detects emitted light scattered by a volume of tissue delivered along a first pathway at a plurality of wavelengths to generate corresponding first detected light intensity output signals, detects emitted light scattered by the volume of tissue delivered along a second pathway different from the first pathway at a plurality of wavelengths to generate corresponding second detected light intensity output signals, determines whether a difference between the emitted light detected along the first pathway and the emitted light detected along the second pathway is greater than a predetermined threshold, and alters sensing by the device in response to the determining whether a difference is greater than the predetermined threshold.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Jonathan L. Kuhn, Can Cinbis, James K. Carney
  • Publication number: 20100317940
    Abstract: A medical device for monitoring a patient condition includes a sensor capable of being advanced transvascularly to be positioned along a volume of tissue, the sensor including a first combination of a light source and a light detector to emit light into a volume of tissue and to detect light scattered by the volume of tissue and to generate a first output signal corresponding to an intensity of the detected light. A control module is coupled to the light source to control the light source to emit light at least four spaced-apart light wavelengths, and a monitoring module is coupled to the light detector to receive the output signal and compute a measure of tissue oxygenation using the light detector output signal.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Jonathan L. Kuhn, David A. Anderson, Can Cinbis, Richard J. O'Brien, Yong K. Cho, Thomas J. Mullen, Avram Scheiner, Rodolphe P. Katra