Patents by Inventor Canghai MA

Canghai MA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10183258
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 22, 2019
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Publication number: 20190001276
    Abstract: A carbon molecular sieve (CMS) membrane is made by pyrolyzing, to a peak pyrolysis temperature TP, a hollow fiber membrane having a polymeric sheath surrounding a polymeric core, anti-substructure collapse particles present in pores formed in the polymeric core help prevent collapse of pores formed in the hollow fiber membrane before pyrolysis. The anti-substructure collapse particles are made of a material or materials that either: i) have a glass transition temperature TG higher than TP, ii) have a melting point higher than TP, or ii) are completely thermally decomposed during said pyrolysis step at a temperature less than TP. The anti-substructure collapse particles are not soluble in a solvent used for dissolution of the polymeric material of the core.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 3, 2019
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Dean W. KRATZER, Madhava R. Kosuri, Canghai Ma
  • Patent number: 10143973
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 4, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel, Dean W. Kratzer
  • Patent number: 10112149
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 30, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Patent number: 10086337
    Abstract: A carbon molecular sieve (CMS) membrane is made by pyrolyzing, to a peak pyrolysis temperature TP, a hollow fiber membrane having a polymeric sheath surrounding a polymeric core, anti-substructure collapse particles present in pores formed in the polymeric core help prevent collapse of pores formed in the hollow fiber membrane before pyrolysis. The anti-substructure collapse particles are made of a material or materials that either: i) have a glass transition temperature TG higher than TP, ii) have a melting point higher than TP, or ii) are completely thermally decomposed during said pyrolysis step at a temperature less than TP. The anti-substructure collapse particles are not soluble in a solvent used for dissolution of the polymeric material of the core.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: October 2, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Dean W. Kratzer, Madhava R. Kosuri, Canghai Ma
  • Publication number: 20180001270
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL, Dean W. KRATZER
  • Publication number: 20180001269
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001271
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001272
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Patent number: 9718031
    Abstract: Disclosed herein is a composite hollow fiber polymer membrane including a porous core layer and a selective sheath layer. The porous core layer includes a polyamide-imide polymer, or a polyetherimide polymer, and the selective sheath layer includes a polyimide polymer, which is prepared from monomers A, B, and C. The monomer A is a dianhydride of the formula wherein X1 and X2 are independently halogenated alkyl group, phenyl or halogen and R1, R2, R3, R4, R5, and R6 are independently H, alkyl, or halogen. The monomer B is a diamino cyclic compound without a carboxylic acid functionality and the monomer C is a diamino cyclic compound with a carboxylic acid functionality. The polyimide polymer further includes covalent ester crosslinks. Also disclosed herein is a method of making the composite polymer membrane and a process for purifying natural gas utilizing the composite polymer membrane.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: August 1, 2017
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Canghai Ma, William John Koros
  • Publication number: 20160367935
    Abstract: A method for making a defect-free carbon molecular sieve (CMS) fiber membrane with an enhanced selectivity and aging resistance includes the steps of fabricating the CMS fiber membrane by pyrolyzing a polymer precursor, coating a thin layer of the silicone rubber on the CMS fiber membrane with the silicone rubber solution and drying the coated CMS fiber membrane to remove the organic solvent. The silicone rubber may be a poly(siloxane) containing repeating units of the moiety of the following formula: wherein R1 and R2 each is independently selected from the group consisting of an H, a C1-C20 aliphatic group, a C3-C20 aromatic group, and a C1-C8 saturated or unsaturated alkoxy group. The silicone rubber may be PDMS.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Canghai MA, Madhava Kosuri, Tao Li, Dean Kratzer, Raja Swaidan
  • Publication number: 20160151746
    Abstract: A carbon molecular sieve (CMS) membrane is made by pyrolyzing, to a peak pyrolysis temperature TP, a hollow fiber membrane having a polymeric sheath surrounding a polymeric core, anti-substructure collapse particles present in pores formed in the polymeric core help prevent collapse of pores formed in the hollow fiber membrane before pyrolysis. The anti-substructure collapse particles are made of a material or materials that either: i) have a glass transition temperature TG higher than TP, ii) have a melting point higher than TP, or ii) are completely thermally decomposed during said pyrolysis step at a temperature less than TP. The anti-substructure collapse particles are not soluble in a solvent used for dissolution of the polymeric material of the core.
    Type: Application
    Filed: August 14, 2015
    Publication date: June 2, 2016
    Inventors: Dean W. KRATZER, Madhava R. KOSURI, Canghai MA
  • Publication number: 20150011815
    Abstract: Disclosed herein is a composite hollow fiber polymer membrane including a porous core layer and a selective sheath layer. The porous core layer includes a polyamide-imide polymer, or a polyetherimide polymer, and the selective sheath layer includes a polyimide polymer, which is prepared from monomers A, B, and C. The monomer A is a dianhydride of the formula wherein X1 and X2 are independently halogenated alkyl group, phenyl or halogen and R1, R2, R3, R4, R5, and R6 are independently H, alkyl, or halogen. The monomer B is a diamino cyclic compound without a carboxylic acid functionality and the monomer C is a diamino cyclic compound with a carboxylic acid functionality. The polyimide polymer further includes covalent ester crosslinks. Also disclosed herein is a method of making the composite polymer membrane and a process for purifying natural gas utilizing the composite polymer membrane.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Canghai MA, William John KOROS