Patents by Inventor Cao Xiao

Cao Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11366990
    Abstract: Embodiments of the present invention provide a computer-implemented method for performing unsupervised time-series feature learning. The method generates a set of reference time-series of random lengths, in which each length is uniformly sampled from a predetermined minimum length to a predetermined maximum length, and in which values of each reference time-series in the set are drawn from a distribution. The method generates a feature matrix for raw time-series data based on a set of computed distances between the generated set of reference time-series and the raw time-series data. The method provides the feature matrix as an input to one or more machine learning models.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: June 21, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael J. Witbrock, Lingfei Wu, Cao Xiao, Jinfeng Yi
  • Publication number: 20210202055
    Abstract: A mechanism computes a discounted health variable with a penalty for deviating from clinical guidelines based on a distance function representing an allowed deviation from the clinical guidelines, applies reinforcement learning techniques on the discounted health variable to generate a reinforcement learning (RL) model for generating dynamic treatment regimes, and determines, for a patient for a plurality of times, a next action in a treatment regime using the RL model with no distance function, an optimal next action in the treatment regime with allowed deviation from the guidelines, and a next action in the treatment regime that adheres to the guidelines. The mechanism generates an outcome output display based on the determined next action in a treatment regime using the RL model with no distance function, optimal next action in the treatment regime with allowed deviation from the guidelines, and next action in the treatment regime that adheres to the guidelines.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 1, 2021
    Inventors: Cao Xiao, Zachary Shahn, Daby M. Sow, Mohamed Ghalwash, Sanjoy Dey
  • Publication number: 20200082272
    Abstract: Mechanisms are provided for executing a trained deep learning (DL) model. The mechanisms receive, from a trained autoencoder executing on a client computing device, one or more intermediate representation (IR) data structures corresponding to training input data input to the trained autoencoder. The mechanisms train the DL model to generate a correct output based on the IR data structures from the trained autoencoder, to thereby generate a trained DL model. The mechanisms receive, from the trained autoencoder executing on the client computing device, a new IR data structure corresponding to new input data input to the trained autoencoder. The mechanisms input the new IR data structure to the trained DL model executing on the deep learning service computing system, to generate output results for the new IR data structure. The mechanisms generate an output response based on the output results, which is transmitted to the client computing device.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Zhongshu Gu, Heqing Huang, Jialong Zhang, Cao Xiao, Tengfei Ma, Dimitrios Pendarakis, Ian M. Molloy
  • Patent number: 10333964
    Abstract: A method involves receiving account registrations and identifying a group of account registrations where each account registration in the group of account registrations shares attributes. The method further involves identifying features of the group of account registrations, and based on the features, determining whether to block a set of accounts that is associated with the group of account registrations.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: June 25, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Stephen Mandell Freeman, Theodore Hwa, Cao Xiao
  • Publication number: 20180330201
    Abstract: Embodiments of the present invention provide a computer-implemented method for performing unsupervised time-series feature learning. The method generates a set of reference time-series of random lengths, in which each length is uniformly sampled from a predetermined minimum length to a predetermined maximum length, and in which values of each reference time-series in the set are drawn from a distribution. The method generates a feature matrix for raw time-series data based on a set of computed distances between the generated set of reference time-series and the raw time-series data. The method provides the feature matrix as an input to one or more machine learning models.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 15, 2018
    Inventors: Michael J. Witbrock, Lingfei Wu, Cao Xiao, Jinfeng Yi