Patents by Inventor Carin Folman

Carin Folman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240001126
    Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman
  • Patent number: 11806536
    Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: November 7, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman
  • Patent number: 11745018
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 5, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Carin Folman, Jennifer Rhude, Aditya Goil
  • Publication number: 20220233864
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Application
    Filed: February 1, 2022
    Publication date: July 28, 2022
    Inventors: Nima Badie, Carin Folman, Jennifer Rhude, Aditya Goil
  • Patent number: 11273312
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 15, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Carin Folman, Jennifer Rhude, Aditya Goil
  • Publication number: 20220072303
    Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 10, 2022
    Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman
  • Patent number: 10966650
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity is provided. The method and systems are under control of one or more processors configured with specific executable instructions. The method and systems obtain a far field cardiac activity (CA) signal that includes a series of beats, the CA signal including paced events. The method and systems identify the paced events in the CA signals. The method and systems determine a score based on an amount of paced events and adjust at least one parameter of an atrial fibrillation (AF) detection process based on the score.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: April 6, 2021
    Assignee: PACESETTER, INC.
    Inventors: Fujian Qu, Stuart Rosenberg, Xing Pei, Carin Folman, Jennifer Rhude
  • Publication number: 20200094056
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 26, 2020
    Inventors: Nima Badie, Carin Folman, Jen Rhude, Aditya Goil
  • Publication number: 20200077910
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity is provided. The method and systems are under control of one or more processors configured with specific executable instructions. The method and systems obtain a far field cardiac activity (CA) signal that includes a series of beats, the CA signal including paced events. The method and systems identify the paced events in the CA signals. The method and systems determine a score based on an amount of paced events and adjust at least one parameter of an atrial fibrillation (AF) detection process based on the score.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Fujian Qu, Stuart Rosenberg, Xing Pei, Carin Folman, Jennifer Rhude