Patents by Inventor Carissa M. Soto

Carissa M. Soto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9751913
    Abstract: A genetically modified cowpea mosaic virus (CPMV) protein capsid serves as a scaffold for metal nanoparticles, preferably gold nanospheres, of 15 nm to 35 nm, creating plasmonic nanoclusters. The self-assembled nanoclusters gave rise to a 10-fold surface-averaged enhancement of the local electromagnetic field. Other viral capsids or virus-like proteins may also serve as such scaffolds.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 5, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Banahalli R. Ratna, Carissa M. Soto, Ronald W. Rendell, Jake Fontana, Jeffrey R. Deschamps
  • Patent number: 8831386
    Abstract: Protein scaffolds from tobacco mosaic virus coat protein modified to incorporate polyhistidine can bind to a metal or a dye while having improved self-assembly characteristics. The scaffold can take the form of tubes or disks, and can further be formed into dual plasmonic ring resonators. Such self-assembled structures provide useful optical properties.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: September 9, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Banahalli R. Ratna, Amy S. Blum, Carissa M. Soto, Michael A. Bruckman, Jinny Lin Liu, Ronald W. Rendell, James Peter Long, Ronald J. Tonucci
  • Publication number: 20140194602
    Abstract: A genetically modified cowpea mosaic virus (CPMV) protein capsid serves as a scaffold for metal nanoparticles, preferably gold nanospheres, of 15 nm to 35 nm, creating plasmonic nanoclusters. The self-assembled nanoclusters gave rise to a 10-fold surface-averaged enhancement of the local electromagnetic field. Other viral capsids or virus-like proteins may also serve as such scaffolds.
    Type: Application
    Filed: March 13, 2014
    Publication date: July 10, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Banahalli R. Ratna, Carissa M. Soto, Ronald W. Rendell, Jake Fontana, Jeffrey R. Deschamps
  • Patent number: 8715923
    Abstract: The present invention relates to compositions and methods for detecting analytes using detectably labeled fluorescent protein scaffolds. In certain embodiments of the invention, the scaffolds are viral particles in which the capsid viral structure provides a scaffold to attach detectably labeled fluorescent dyes and capture moieties that can be utilized to determine the presence of a desired analyte in a sample using any suitable method. The protein scaffold can contain amino acids carrying reactive groups (e.g., amines and thiols) that are spatially distributed on it with large enough separation to enable the attachment of a greater number of fluorescent label molecules without quenching.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: May 6, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Amy S Blum, Banahalli R Ratna, Kim Sapsford, Gary J Vora, Carissa M Soto
  • Publication number: 20130181171
    Abstract: Protein scaffolds from tobacco mosaic virus coat protein modified to incorporate polyhistidine can bind to a metal or a dye while having improved self-assembly characteristics. The scaffold can take the form of tubes or disks, and can further be formed into dual plasmonic ring resonators. Such self-assembled structures provide useful optical properties.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Inventors: Banahalli R. Ratna, Amy S. Blum, Carissa M. Soto, Michael A. Bruckman, Jinny Lin Liu, Ronald W. Rendell, James Peter Long, Ronald J. Tonucci
  • Publication number: 20120214867
    Abstract: A T4 nanoparticle is a non-infectious, tail-less variant of a T4 bacteriophage. In one embodiment, eukaryotic cells are labeled with dyed T4 nanoparticles, wherein each dyed T4 nanoparticle comprises at least 350 dye molecules covalently bound thereto. In another embodiment, T4 nanoparticles are used to deliver exogenous DNA to eukaryotic cells for protein expression therein. It is contemplated that T4 nanoparticles may be used to deliver other exogenous material to eukaryotic cells.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 23, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jinny Lin Liu, Kelly L. Robertson, Carissa M. Soto
  • Publication number: 20080220408
    Abstract: The present invention relates to compositions and methods for detecting analytes using detectably labeled fluorescent protein scaffolds. In certain embodiments of the invention, the scaffolds are viral particles in which the capsid viral structure provides a scaffold to attach detectably labeled fluorescent dyes and capture moieties that can be utilized to determine the presence of a desired analyte in a sample using any suitable method. The protein scaffold can contain amino acids carrying reactive groups (e.g.
    Type: Application
    Filed: August 1, 2005
    Publication date: September 11, 2008
    Applicant: The Government of the US, as represented by the Se
    Inventors: Amy S. Blum, Banahalli R. Ratna, Kim Sapsford, Gary J. Vora, Carissa M. Soto