Patents by Inventor Carissima Marie Hudson

Carissima Marie Hudson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125003
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Publication number: 20240125004
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Patent number: 11932962
    Abstract: A method for producing a silicon ingot by the horizontal magnetic field Czochralski method includes rotating a crucible containing a silicon melt, applying a horizontal magnetic field to the crucible, contacting the silicon melt with a seed crystal, and withdrawing the seed crystal from the silicon melt while rotating the crucible to form a silicon ingot. The crucible has a wettable surface with a cristobalite layer formed thereon.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: March 19, 2024
    Assignee: GlobalWafers Co., Ltd.
    Inventors: JaeWoo Ryu, JunHwan Ji, WooJin Yoon, Richard J. Phillips, Carissima Marie Hudson
  • Publication number: 20240068123
    Abstract: Methods for producing a silicon ingot in which a horizontal magnetic field is generated are disclosed. The magnet position is controlled in at least two stages of ingot growth. The magnetic poles may be at a first position during the first stage of ingot growth and lowered to a second position in a second stage of ingot growth. By controlling the magnet position, the crystal-melt interface shape may be relatively more consistent.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: JaeWoo Ryu, Carissima Marie Hudson, JunHwan Ji, WooJin Yoon
  • Publication number: 20240068122
    Abstract: Methods for producing a silicon ingot in which a horizontal magnetic field is generated are disclosed. The magnet position is controlled in at least two stages of ingot growth. The magnetic poles may be at a first position during the first stage of ingot growth and lowered to a second position in a second stage of ingot growth. By controlling the magnet position, the crystal-melt interface shape may be relatively more consistent.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: JaeWoo Ryu, Carissima Marie Hudson, JunHwan Ji, WooJin Yoon
  • Publication number: 20240068121
    Abstract: Synesthetic quartz crucibles for holding a silicon melt during growth of single crystal silicon ingots are disclosed. The crucibles may include a coating disposed on the inner and outer surface of the crucible body along the rim. The coating extends only partially down the sidewall of the crucible and may extend to or beyond the melt line of the crucible.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: JaeWoo Ryu, Carissima Marie Hudson, TaeWon Yuk, JunHwan Ji
  • Patent number: 11873574
    Abstract: A method for producing a silicon ingot by the horizontal magnetic field Czochralski method includes rotating a crucible containing a silicon melt, applying a horizontal magnetic field to the crucible, contacting the silicon melt with a seed crystal, and withdrawing the seed crystal from the silicon melt while rotating the crucible to form a silicon ingot. The crucible has a wettable surface with a cristobalite layer formed thereon.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: January 16, 2024
    Assignee: GlobalWafers Co., Ltd.
    Inventors: JaeWoo Ryu, JunHwan Ji, WooJin Yoon, Richard J. Phillips, Carissima Marie Hudson
  • Patent number: 11873575
    Abstract: Ingot puller apparatus for preparing a single crystal silicon ingot by the Czochralski method are disclosed. The ingot puller apparatus includes a heat shield. The heat shield has a leg segment that includes a void (i.e., an open space without insulation) disposed in the leg segment. The heat shield may also include insulation partially within the heat shield.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: January 16, 2024
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Jiaying Ke, Sumeet S. Bhagavat, Jaewoo Ryu, Benjamin Meyer, William Luter, Carissima Marie Hudson
  • Publication number: 20230392281
    Abstract: A graphite susceptor for supporting a quartz crucible during a crystal growth process includes a body having an interior surface and a coating deposited onto the interior surface. The interior surface of the body defines a cavity, and the cavity has a size and shape complementary to an outer size and shape of the crucible. The coating includes boron nitride and a sintering additive. The sintering additive is configured to promote densification of the boron nitride.
    Type: Application
    Filed: May 31, 2023
    Publication date: December 7, 2023
    Inventors: Richard J. Phillips, William Luter, Carissima Marie Hudson, JaeWoo Ryu
  • Publication number: 20230340690
    Abstract: Methods for forming single crystal silicon ingots with improved resistivity control are disclosed. The methods involve growth of a sample rod. The sample rod may have a diameter less than the diameter of the product ingot. The sample rod is cropped to form a center slab. The resistivity of the center slab may be measured directly such as by a four-point probe. The sample rod or optionally the center slab may be annealed in a thermal donor kill cycle prior to measuring the resistivity, and the annealed rod or slab is irradiated with light in order to enhance the relaxation rate and enable more rapid resistivity measurement.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Inventors: Carissima Marie Hudson, HyungMin Lee, JaeWoo Ryu, Richard J. Phillips, Robert Wendell Standley
  • Patent number: 11767611
    Abstract: Methods for producing monocrystalline silicon ingots by horizontal magnetic field Czochralski are disclosed. During growth of the neck and/or growth of at least a portion of the crown, a magnetic field is not applied to the neck and/or crown or a relatively weak magnetic field of 1500 gauss or less is applied. A horizontal magnetic field (e.g., greater than 1500 gauss) is applied during growth of the ingot main body.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: September 26, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: JaeWoo Ryu, Carissima Marie Hudson, JunHwan Ji, WooJin Yoon
  • Patent number: 11739437
    Abstract: Methods for forming single crystal silicon ingots with improved resistivity control are disclosed. The methods involve growth of a sample rod. The sample rod may have a diameter less than the diameter of the product ingot. The sample rod is cropped to form a center slab. The resistivity of the center slab may be measured directly such as by a four-point probe. The sample rod or optionally the center slab may be annealed in a thermal donor kill cycle prior to measuring the resistivity, and the annealed rod or slab is irradiated with light in order to enhance the relaxation rate and enable more rapid resistivity measurement.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: August 29, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Carissima Marie Hudson, HyungMin Lee, JaeWoo Ryu, Richard J. Phillips, Robert Wendell Standley
  • Publication number: 20230250550
    Abstract: Methods for producing a product ingot from a silicon melt held within a crucible are disclosed. The methods involve evaluating one or more ingot puller apparatus to determine if the apparatus is capable of producing low oxygen content silicon product ingots. A sample rod is pulled from the silicon melt and the oxygen content of the sample rod is measured.
    Type: Application
    Filed: January 10, 2023
    Publication date: August 10, 2023
    Inventors: Carissima Marie Hudson, JaeWoo Ryu, HyungMin Lee
  • Patent number: 11680335
    Abstract: A method for growing a single crystal silicon ingot by the continuous Czochralski method is disclosed. The melt depth and thermal conditions are constant during growth because the silicon melt is continuously replenished as it is consumed, and the crucible location is fixed. The critical v/G is determined by the hot zone configuration, and the continuous replenishment of silicon to the melt during growth enables growth of the ingot at a constant pull rate consistent with the critical v/G during growth of a substantial portion of the main body of the ingot. The continuous replenishment of silicon is accompanied by periodic or continuous nitrogen addition to the melt to result in a nitrogen doped ingot.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: June 20, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Carissima Marie Hudson, Jae-Woo Ryu
  • Patent number: 11680336
    Abstract: A method for growing a single crystal silicon ingot by the continuous Czochralski method is disclosed. The melt depth and thermal conditions are constant during growth because the silicon melt is continuously replenished as it is consumed, and the crucible location is fixed. The critical v/G is determined by the hot zone configuration, and the continuous replenishment of silicon to the melt during growth enables growth of the ingot at a constant pull rate consistent with the critical v/G during growth of a substantial portion of the main body of the ingot. The continuous replenishment of silicon is accompanied by periodic or continuous nitrogen addition to the melt to result in a nitrogen doped ingot.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: June 20, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Carissima Marie Hudson, Jae-Woo Ryu
  • Patent number: 11655560
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: May 23, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, Hyungmin Lee, Byungchun Kim, Robert J. Falster
  • Patent number: 11655559
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: May 23, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, HyungMin Lee, ByungChun Kim, Robert J. Falster
  • Publication number: 20230142194
    Abstract: Methods for producing single crystal silicon ingots in which an array of quartz particles are added to the crucible assembly before ingot growth are disclosed. The array may be disposed in the outer melt zone of the crucible assembly as in a continuous Czochralski (CCz) process. The array may be made of quartz particles that are interconnected by linking members.
    Type: Application
    Filed: October 12, 2022
    Publication date: May 11, 2023
    Inventors: Richard Joseph Phillips, Carissima Marie Hudson
  • Publication number: 20230112094
    Abstract: Methods for producing single crystal silicon ingots are disclosed. The methods may involve modeling formation of thermal donors and target resistivity during downstream annealing processes such as during subsequent device manufacturing such as manufacturing of interposer devices. The model may output a pre-anneal wafer resistivity target range. The single crystal silicon ingot production process may be modeled to determine a counter-doping schedule to achieve the pre-anneal wafer resistivity target range across a longer length of the main body of the ingot.
    Type: Application
    Filed: September 28, 2022
    Publication date: April 13, 2023
    Inventors: Carissima Marie Hudson, JaeWoo Ryu, Michael Robbin Seacrist
  • Publication number: 20230083235
    Abstract: Ingot puller apparatus for preparing a single crystal silicon ingot by the Czochralski method are disclosed. The ingot puller apparatus includes a heat shield. The heat shield has a leg segment that includes a void (i.e., an open space without insulation) disposed in the leg segment. The heat shield may also include insulation partially within the heat shield.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 16, 2023
    Inventors: Jiaying Ke, Sumeet S. Bhagavat, Jaewoo Ryu, Benjamin Meyer, William Luter, Carissima Marie Hudson