Patents by Inventor Carl A. DeWilde

Carl A. DeWilde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7974002
    Abstract: An optical communication system is operable to communicate a plurality of wavelength signals at a bit rate of at least 9.5 gigabits per second over a multiple span communication link spanning at least 400 kilometers without optical regenerators. The plurality of wavelength signals include a bandwidth of more than 32 nanometers separated into at least 160 optical channels. The system includes a plurality of optical transmitters implementing a forward error correction (FEC) coding technique. The FEC encoded wavelength signals comprise a bit error rate of 10?09 or better after FEC decoding. The system also includes at least five (5) optical add/drop multiplexers (OADMs), each coupled to one or more spans of the multiple span communication link. The system further includes a plurality of amplifiers each coupled to one or more spans of the communication link, at least a majority of the amplifiers comprise a distributed Raman amplification stage.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 5, 2011
    Assignee: Xtera Communication, Inc.
    Inventors: Mohammed N. Islam, Carl A. DeWilde
  • Publication number: 20070188851
    Abstract: An optical communication system is operable to communicate a plurality of wavelength signals at a bit rate of at least 9.5 gigabits per second over a multiple span communication link spanning at least 400 kilometers without optical regenerators. The plurality of wavelength signals include a bandwidth of more than 32 nanometers separated into at least 160 optical channels. The system includes a plurality of optical transmitters implementing a forward error correction (FEC) coding technique. The FEC encoded wavelength signals comprise a bit error rate of 10?09 or better after FEC decoding. The system also includes at least five (5) optical add/drop multiplexers (OADMs), each coupled to one or more spans of the multiple span communication link. The system further includes a plurality of amplifiers each coupled to one or more spans of the communication link, at least a majority of the amplifiers comprise a distributed Raman amplification stage.
    Type: Application
    Filed: March 26, 2007
    Publication date: August 16, 2007
    Applicant: Xtera Communications, Inc.
    Inventors: Mohammed Islam, Carl DeWilde
  • Patent number: 7254337
    Abstract: An optical communication system includes a plurality of optical add/drop multiplexers (OADMs). The plurality of OADMs includes at least five low distortion OADMs. Each OADM is coupled between spans of a multiple span communication link and operable to receive a multiple wavelength signal. The multiple wavelength signal includes a plurality of bands of wavelength signals each separated from other bands of wavelength signals by one or more guard-channels. In one embodiment, each of the at least five low distortion OADMs adds/drops a common first band of wavelengths to/from the multiple wavelength signal. In some embodiments, a spectral distortion associated with a pass-through wavelength signal spectrally adjacent to one of the one or more guard-channels is no more than three decibels after exiting the last of the plurality of low distortion OADMs. In those embodiments, the guard-channel is adjacent to the first band of wavelengths.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: August 7, 2007
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Andrzej Kaminski, Herve A. Fevrier, Carl A. DeWilde, Ozdal Boyraz
  • Patent number: 7197245
    Abstract: An optical communication system is operable to communicate a plurality of wavelength signals at a bit rate of at least 9.5 gigabits per second over a multiple span communication link spanning at least 400 kilometers without optical regenerators. The plurality of wavelength signals include a bandwidth of more than 32 nanometers separated into at least 160 optical channels. The system includes a plurality of optical transmitters implementing a forward error correction (FEC) coding technique. The FEC encoded wavelength signals comprise a bit error rate of 10?09 or better after FEC decoding. The system also includes at least five (5) optical add/drop multiplexers (OADMs), each coupled to one or more spans of the multiple span communication link. The system further includes a plurality of amplifiers each coupled to one or more spans of the communication link, at least a majority of the amplifiers comprise a distributed Raman amplification stage.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: March 27, 2007
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl A. DeWilde
  • Patent number: 7075927
    Abstract: A method and system for transporting traffic having disparate qualities of service classes across a packet-switched network includes receiving at an ingress node of a network a plurality of packets each comprising a quality of service (QoS) class defined externally to the network. Packets having a QoS class comprising delay bound guarantees and a low drop priority are combined into a first internal QoS class. Packets having a QoS class comprising a flexible drop priority and no delay bound guarantees are combined into a second internal QoS class. Packets having a QoS class including no delivery guarantees are combined into a third internal QoS class. The packets are transmitted in the network based on their internal QoS class.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: July 11, 2006
    Assignee: Fujitsu Limited
    Inventors: Li Mo, Edward T. Sullivan, Carl A. DeWilde
  • Patent number: 7068938
    Abstract: An optical communication system includes a plurality of optical add/drop multiplexers (OADMs). The plurality of OADMs includes at least five low distortion OADMs. Each OADM is coupled between spans of a multiple span communication link and operable to receive a multiple wavelength signal. The multiple wavelength signal includes a plurality of bands of wavelength signals each separated from other bands of wavelength signals by one or more guard-channels. In one embodiment, each of the at least five low distortion OADMs adds/drops a common first band of wavelengths to/from the multiple wavelength signal. In some embodiments, a spectral distortion associated with a pass-through wavelength signal spectrally adjacent to one of the one or more guard-channels is no more than three decibels after exiting the last of the plurality of low distortion OADMs. In those embodiments, the guard-channel is adjacent to the first band of wavelengths.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 27, 2006
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Andrzej Kaminski, Herve A. Fevrier, Carl A. DeWilde, Ozdal Boyraz
  • Patent number: 6876489
    Abstract: A Raman amplifier apparatus includes an optical transmission line with an input to receive an optical signal, an output that passes the optical signal, a first Raman gain fiber and a second Raman gain fiber. A first WDM is positioned between the second Raman gain fiber and the output. A first set of pump wavelengths is input to the first WDM. A second WDM is positioned between the first and second Raman gain fibers. A second set of pump wavelengths is input to the second WDM. At least a portion of the first set of pump wavelengths are different than the second set of pump wavelengths. The first and second set of pump wavelengths propagate in the same direction.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: April 5, 2005
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl Dewilde, Michael Freeman
  • Patent number: 6744553
    Abstract: In one aspect of the invention, an apparatus operable to convert wavelengths of a plurality of optical signals includes a coupler operable to receive a pump signal and a plurality of input signals each input signal comprising at least one wavelength different than the wavelengths of others of the plurality of input optical signals. The apparatus further includes an optical medium operable to receive the pump signal and the plurality of input signals from the couplet, wherein the pump signal and each of the plurality of input signals are synchronized to overlap at least partially during at least a part of the time spent traversing the optical medium to facilitate generation of a plurality of converted wavelength signals each comprising a wavelength that is different than the wavelengths of at least some of the plurality of input signals. Various embodiments can result in low cross-talk and/or low polarization sensitivity.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: June 1, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Ozdal Boyraz, Carl A. Dewilde
  • Patent number: 6693909
    Abstract: A method and system for transporting traffic in a packet-switched network segments high priority pass-through traffic from low priority pass-through traffic. The high priority pass-through traffic is transmitted on an egress link preferentially over the low priority pass-through traffic and ingress high priority local traffic. The ingress high priority local traffic is transmitted on the egress link preferentially over the low priority pass-through traffic.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: February 17, 2004
    Assignee: Fujitsu Network Communications, Inc.
    Inventors: Li Mo, Edward T. Sullivan, Carl A. DeWilde, Wayne R. Sankey
  • Patent number: 6646788
    Abstract: A multi-stage Raman amplifier includes a first Raman amplifier stage having a first sloped gain profile operable to amplify a plurality of signal wavelengths, and a second Raman amplifier stage having a second sloped gain profile operable to amplify at least most of the plurality of signal wavelengths after those wavelengths have been amplified by the first stage. The second sloped gain profile is approximately complementary slope to the slope of the first sloped gain profile. The combined effect of the first and second Raman stages contributes to an approximately flat overall gain profile over the plurality of signal wavelengths.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: November 11, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl A. Dewilde
  • Publication number: 20030189750
    Abstract: A Raman amplifier apparatus includes an optical transmission line with an input to receive an optical signal, an output that passes the optical signal, a first Raman gain fiber and a second Raman gain fiber. A first WDM is positioned between the second Raman gain fiber and the output. A first set of pump wavelengths is input to the first WDM. A second WDM is positioned between the first and second Raman gain fibers. A second set of pump wavelengths is input to the second WDM. At least a portion of the first set of pump wavelengths are different than the second set of pump wavelengths. The first and second set of pump wavelengths propagate in the same direction.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 9, 2003
    Applicant: Xtera Communications, Inc., a Delaware corporation
    Inventors: Mohammed N. Islam, Carl Dewilde, Michael Freeman
  • Patent number: 6618192
    Abstract: An amplifier apparatus includes an optical transmission line with a Raman amplification region that provides a pump to signal power conversion efficiency of at least 20%. The Raman amplification region is configured to amplify a signal with multiple wavelengths over at least a 30 nm range of wavelengths. A pump source is coupled to the optical transmission line. An input optical signal is amplified in the Raman amplification region and an output signal is generated that has at least 100 mW more power than the input optical signal.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: September 9, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed Islam, Carl Dewilde, Michael Freeman
  • Patent number: 6587259
    Abstract: One aspect of the invention includes an optical amplifier operable to amplify a plurality of optical wavelength signals at least in part through Raman amplification. The amplifier includes an input operable to receive a plurality of wavelength signals and an output operable to communicate an amplified version of at least some of the plurality of wavelength signals. The amplifier further includes a pump assembly operable to generate one or more pump signals and a gain medium operable to receive the plurality of wavelength signals and the one or more pump signals and to facilitate amplification of at least some of the plurality of wavelength signals. The amplifier has associated with it a noise figure having a shape varying as a function of wavelength. At least one of the one or more pump signals is operable to have its power varied to selectively control the shape of the noise figure.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: July 1, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl A. DeWilde, Michael J. Freeman
  • Patent number: 6574037
    Abstract: A Raman amplifier apparatus includes an optical transmission line with an input to receive an optical signal, an output that passes the optical signal, a first Raman gain fiber and a second Raman gain fiber. A first WDM is positioned between the second Raman gain fiber and the output. A first set of pump wavelengths is input to the first WDM. A second WDM is positioned between the first and second Raman gain fibers. A second set of pump wavelengths is input to the second WDM. At least a portion of the first set of pump wavelengths are different than the second set of pump wavelengths. The first and second set of pump wavelengths propagate in the same direction.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: June 3, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl Dewilde, Michael Freeman
  • Publication number: 20030095324
    Abstract: A multi-stage Raman amplifier includes a first Raman amplifier stage having a first sloped gain profile operable to amplify a plurality of signal wavelengths, and a second Raman amplifier stage having a second sloped gain profile operable to amplify at least most of the plurality of signal wavelengths after those wavelengths have been amplified by the first stage. The second sloped gain profile is approximately complementary slope to the slope of the first sloped gain profile. The combined effect of the first and second Raman stages contributes to an approximately flat overall gain profile over the plurality of signal wavelengths.
    Type: Application
    Filed: November 12, 2002
    Publication date: May 22, 2003
    Applicant: Xtera Communications, Inc., a Delaware corporation
    Inventors: Mohammed N. Islam, Carl A. Dewilde, Michael J. Freeman
  • Publication number: 20030067671
    Abstract: In one aspect of the invention, a method of amplifying optical signals includes identifying one of a plurality of pump signals driving an amplification system as a failing pump signal comprising a reduced power compared to a normal power of the failing pump signal. The method further includes adjusting the power of at least one other of the plurality of pump signals based at least in part on the failing pump signal to at least partially compensate for a degradation of performance of the amplification system that would otherwise be caused by the reduction in power of the failing pump signal.
    Type: Application
    Filed: October 5, 2001
    Publication date: April 10, 2003
    Inventors: Mohammed N. Islam, Carl A. deWilde, Michael J. Freeman
  • Publication number: 20030067674
    Abstract: A multi-stage Raman amplifier includes a first Raman amplifier stage having a first sloped gain profile operable to amplify a plurality of signal wavelengths, and a second Raman amplifier stage having a second sloped gain profile operable to amplify at least most of the plurality of signal wavelengths after those wavelengths have been amplified by the first stage. The second sloped gain profile is approximately complementary slope to the slope of the first sloped gain profile. The combined effect of the first and second Raman stages contributes to an approximately flat overall gain profile over the plurality of signal wavelengths.
    Type: Application
    Filed: November 5, 2002
    Publication date: April 10, 2003
    Applicant: Xtera Communications, Inc., a Delaware corporation
    Inventors: Mohammed N. Islam, Carl A. Dewilde, Michael J. Freeman
  • Patent number: 6532101
    Abstract: A multi-stage Raman amplifier includes a first Raman amplifier stage having a first sloped gain profile operable to amplify a plurality of signal wavelengths, and a second Raman amplifier stage having a second sloped gain profile operable to amplify at least most of the plurality of signal wavelengths after those wavelengths have been amplified by the first stage. The second sloped gain profile is approximately complementary slope to the slope of the first sloped gain profile. The combined effect of the first and second Raman stages contributes to an approximately flat overall gain profile over the plurality of signal wavelengths.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: March 11, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl A. Dewilde, Michael J. Freeman
  • Publication number: 20030021008
    Abstract: One aspect of the invention includes an optical amplifier operable to amplify a plurality of optical wavelength signals at least in part through Raman amplification. The amplifier includes an input operable to receive a plurality of wavelength signals and an output operable to communicate an amplified version of at least some of the plurality of wavelength signals. The amplifier further includes a pump assembly operable to generate one or more pump signals and a gain medium operable to receive the plurality of wavelength signals and the one or more pump signals and to facilitate amplification of at least some of the plurality of wavelength signals. The amplifier has associated with it a noise figure having a shape varying as a function of wavelength. At least one of the one or more pump signals is operable to have its power varied to selectively control the shape of the noise figure.
    Type: Application
    Filed: July 27, 2001
    Publication date: January 30, 2003
    Inventors: Mohammed N. Islam, Carl A. Dewilde, Michael J. Freeman
  • Publication number: 20030002137
    Abstract: A multi-stage Raman amplifier includes a first Raman amplifier stage having a first sloped gain profile operable to amplify a plurality of signal wavelengths, and a second Raman amplifier stage having a second sloped gain profile operable to amplify at least most of the plurality of signal wavelengths after those wavelengths have been amplified by the first stage. The second sloped gain profile is approximately complementary slope to the slope of the first sloped gain profile. The combined effect of the first and second Raman stages contributes to an approximately flat overall gain profile over the plurality of signal wavelengths.
    Type: Application
    Filed: March 16, 2001
    Publication date: January 2, 2003
    Inventors: Mohammed N. Islam, Carl A. Dewilde, Michael J. Freeman