Patents by Inventor Carl A. Miller

Carl A. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240110515
    Abstract: A gas turbine engine including: a fan assembly comprising a fan; and a turbomachine drivingly coupled to the fan and including a compressor section, a combustion section, and a turbine section arranged in serial flow order and defining in part a working gas flowpath, the gas turbine engine defining a bypass passage over the turbomachine; the turbomachine further including a heat exchanger and defining an annular cooling passage extending between an inlet and an outlet, the inlet in airflow communication with the working gas flowpath at a location upstream of the compressor section and the outlet in airflow communication with the bypass passage, the heat exchanger in thermal communication with an airflow through the cooling passage.
    Type: Application
    Filed: November 30, 2022
    Publication date: April 4, 2024
    Inventors: Brandon Wayne Miller, Andrew Hudecki, Steven Douglas Johnson, Eric Barre, John Carl Glessner, Efren Souza Chavez
  • Publication number: 20240100936
    Abstract: Methods and systems are provided for an electric axle in a vehicle. An electric axle includes an electric motor having a stator and a rotor, a coolant manifold mounted to a first end plate of the rotor, the first end plate opposite a second end plate distal to the coolant manifold, wherein the coolant manifold is configured to flow coolant to rotor coolant lines extending axially through the rotor, and a spray ring comprising coolant lines coupled to the coolant manifold, wherein coolant flowing from the coolant manifold to the spray ring flows in a direction angled to an axial direction, wherein the spray ring is positioned circumferentially about axial stator end windings and configured to spray coolant onto an outer diameter of the end windings, wherein the first end plate and the second end plate are configured to spray coolant onto an inner diameter of the end windings.
    Type: Application
    Filed: September 20, 2023
    Publication date: March 28, 2024
    Inventors: Carl TRUDEL, Steven VANHEE, Luke MILLER
  • Publication number: 20240106303
    Abstract: Systems and methods for electric motor cooling. The cooling system, in one example, includes a sealing ring coupled to or formed in a stator and including a flange that axially extends outward from an axial side of the stator. The cooling system further includes a first sealing sleeve with a first sealing interface that is formed between the sealing sleeve and a motor housing and a second sealing interface that is formed between the sealing sleeve and the flange, where a cavity is formed between the sealing sleeve and the sealing ring in which a stator end winding is at least partially immersed in a coolant.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 28, 2024
    Inventors: Matthew K. PASCHALL, Samuel Wesley COX, Carl TRUDEL, Alexandre PARE, Steven VANHEE, Luke MILLER, Christopher M. COOK
  • Patent number: 11939152
    Abstract: Systems and methods for efficiently managing bulk material are provided. The disclosure is directed to a portable support structure used to receive one or more portable containers of bulk material and output bulk material from the containers directly into the blender hopper. The portable support structure may include a frame for receiving and holding the one or more portable bulk material containers in an elevated position proximate the blender hopper, as well as one or more gravity feed outlets for routing the bulk material from the containers directly into the blender hopper. In some embodiments, the portable support structure may be transported to the well site on a trailer, unloaded from the trailer, and positioned proximate the blender unit. In other embodiments, the portable support structure may be a mobile support structure that is integrated into a trailer unit.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: March 26, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Thomas W. Hawkins, Bryan John Lewis, Tori H. Miller, Wesley John Warren, Austin Carl Schaffner, Glenn Ray Fowler, Bryan Chapman Lucas, Calvin L. Stegemoeller
  • Patent number: 11939367
    Abstract: The present invention is based on the seminal discovery that BTLA agonist fusion proteins modulate an immune response. Specifically, the present invention provides fusion proteins that bind BTLA enhancing BTLA signaling. The present invention further provides methods of treating cancer and immune and inflammatory diseases and disorders with a BTLA agonist fusion protein as described herein.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: March 26, 2024
    Assignees: Sanford Burnham Prebys Medical Discovery Institute, Pfizer Inc.
    Inventors: Carl F. Ware, John Sedy, Tigran Aivazian, Brian Miller, Natasha K. Crellin
  • Publication number: 20240081755
    Abstract: A weightbearing simulation assembly, includes a substrate having a mounting surface, the substrate further including a first section and second section hingedly coupled together such that the first section and second section are foldable relative one another. A subject support is disposed on a first section of the mounting surface, and a pedal assembly is disposed on a second section of the mounting surface. The pedal assembly is spaced apart from the subject support by a distance, and includes a contact plate that receives a compressive force from a subject, measures the compressive force, and provides an indication that the compressive force corresponds to a weightbearing condition of the subject.
    Type: Application
    Filed: September 12, 2023
    Publication date: March 14, 2024
    Applicant: SIMULATE Technologies, LLC
    Inventors: Mark Carl Miller, Daniel Schwartzbauer, Stephen F. Conti, Sven Huijs
  • Patent number: 11920865
    Abstract: Devices and methods for cleaning and/or drying endoscopic instruments, such as endoscopes, are provided. A drying device for use with an endoscopic instrument comprises an elongate member configured for advancement through an internal lumen within the endoscopic instrument and a drying member removably coupled to a portion of the elongate member. The drying element comprises a variable pressure region shaped and configured to increase the hydrodynamic fluid friction force and fluid pressure force applied to the wall of the internal lumen of the endoscope to more effectively remove all of the moisture and fluid from the internal surfaces of an endoscopic instrument.
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: March 5, 2024
    Assignee: GI Scientific, LLC
    Inventors: Scott Miller, Frank Carter, Carl Gauger
  • Publication number: 20240037220
    Abstract: An access token broker is executed within a first iFrame, a fully trusted application is executed in a second iFrame within the first iFrame, and a partially trusted application is executed in a third iFrame within the second iFrame. The partially trusted application may identify the iFrame in which the access token broker is executing and request an access token from the access token broker. The access token broker determines whether the request for the access token is to be granted. If the request is to be granted, the access token broker requests the access token from a hosting application. The hosting application obtains the requested access token from an access token server and provides the access token to the access token broker. The access token broker receives the access token from the hosting application and provides the access token to the partially trusted application.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 1, 2024
    Inventors: Graham Lee MCMYNN, Patrick Carl MILLER, Luca BANDINELLI, John Giang NGUYEN
  • Patent number: 11656718
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 23, 2023
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11614820
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: March 28, 2023
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20230075139
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11513648
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 29, 2022
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20220244828
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11353983
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: June 7, 2022
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11317876
    Abstract: A weightbearing simulation assembly includes a substrate comprising a mounting surface extending in a first direction a subject support disposed on a first region of the mounting surface and a pedal assembly disposed on a second region of the mounting surface. The pedal assembly includes a spring assembly including a contact plate facing the subject support, a compression plate, and a first spring disposed between the contact plate and the compression plate. A subject applies a compressive force to the contact plate in a compression direction to simulate a load-bearing condition by compressing the first spring. An orientation of the pedal assembly may be adjusted to change a relative angle between the compression direction and the first direction to alter an imaging angle.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: May 3, 2022
    Assignee: SIMULATE Technologies, LLC
    Inventors: Daniel Schwartzbauer, Mark Carl Miller, Stephen F. Conti
  • Publication number: 20210378605
    Abstract: A weightbearing simulation assembly includes a substrate comprising a mounting surface extending in a first direction a subject support disposed on a first region of the mounting surface and a pedal assembly disposed on a second region of the mounting surface. The pedal assembly includes a spring assembly including a contact plate facing the subject support, a compression plate, and a first spring disposed between the contact plate and the compression plate. A subject applies a compressive force to the contact plate in a compression direction to simulate a load-bearing condition by compressing the first spring. An orientation of the pedal assembly may be adjusted to change a relative angle between the compression direction and the first direction to alter an imaging angle.
    Type: Application
    Filed: May 20, 2021
    Publication date: December 9, 2021
    Applicant: SIMULATE Technologies, LLC
    Inventors: Daniel Schwartzbauer, Mark Carl Miller, Stephen F. Conti
  • Patent number: 11194415
    Abstract: The present invention relates to touch sensor systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for indirect force-aware touch control. An exemplary method for receiving an adjustment gesture formed on or about a plurality of sensor panels on a plurality of faces of a device includes detecting two or more touches at a first time at the plurality of sensor panels and determining that the touches at the first time are arranged in a pattern corresponding to a predetermined gesture. The method further includes determining a relative pressure between the touches, associating the gesture with a user interface element (that accepts an adjustment input based on the relative pressure between the two or more touches) and providing an input to the user interface element based on the gesture and relative pressure between the touches.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 7, 2021
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20210240296
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11077590
    Abstract: A mold assembly includes a first upper portion, a second upper portion, and a base removably coupled to each other. A method of manufacturing an electrical connector with the mold assembly includes preheating a resin, mixing the resin with a hardener, preheating the mold assembly, injecting the resin hardener mixture into the mold assembly, and curing the resin hardener mixture.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 3, 2021
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David Bartlett, Elizabeth O'Neill, Robert Moser, Roger Dickerhoof, Carl Miller, Joshua Jeffers, Bryan Woosley, James Merryfield
  • Patent number: D997660
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: September 5, 2023
    Assignee: INOOBI, INC.
    Inventors: Wanki Kevin Choi, Adam Carl Miller