Patents by Inventor Carl A. Stover

Carl A. Stover has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10838127
    Abstract: Polarizer stacks are described. More particularly, polarizer stacks that include an absorbing polarizer and multiple reflective polarizers, including at least one collimating reflective polarizer are described. Such polarizer stacks are capable of emitted light that is both collimated and color neutral. Backlights incorporating such polarizer stacks are also described.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: November 17, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Adam D. Haag, Timothy J. Nevitt, Michael F. Weber, Robert D. Taylor, Carl A. Stover
  • Publication number: 20200355859
    Abstract: Multilayer reflective polarizers are described. In particular, multilayer reflective polarizers that include both crystalline high index layers and low index layers are disclosed. These reflective polarizers may be particularly suitable for combiner applications, including automotive heads up display applications with demanding ambient environments. Layers are made of PET and PETG.
    Type: Application
    Filed: January 22, 2019
    Publication date: November 12, 2020
    Inventors: Adam D. Haag, Matthew B. Johnson, Carl A. Stover, Timothy J. Nevitt, William F. Edmonds, Stephen A. Johnson
  • Publication number: 20200319388
    Abstract: An optical system including a first optical element having a curved first major surface and an optical stack bonded and conforming to the curved first major surface of the first optical element is described. The optical stack includes a reflective polarizer substantially transmitting light having a first polarization state and substantially reflecting light having an orthogonal second polarization state and a non-adhesive flexible optical layer bonded to the reflective polarizer and comprising substantially parallel opposing first and second major surfaces. At least one location on the non-adhesive flexible optical layer has an optical retardance of less than about 100 nm or greater than about 200 nm at a wavelength of about 550 nm.
    Type: Application
    Filed: September 28, 2018
    Publication date: October 8, 2020
    Inventors: Gregg A. Ambur, Jo A. Etter, Adam D. Haag, Carl A. Stover, Timothy J. Nevitt, Zhisheng Yun, Timothy L. Wong
  • Publication number: 20200183068
    Abstract: Rolls of film are described. In particular, rolls of film including a multilayer birefringent reflective polarizer and a polyvinyl alcohol layer are described. Such films exhibit low variation in pass axis across a full crossweb width.
    Type: Application
    Filed: June 26, 2018
    Publication date: June 11, 2020
    Inventors: Kristy A. Gillette, Carl A. Stover, Matthew B. Johnson
  • Publication number: 20200183065
    Abstract: Optical films are disclosed that include a plurality of interference layers. Each interference layer reflects or transmits light primarily by optical interference. The total number of the interference layers is less than about 1000. For a substantially normally incident light in a predetermined wavelength range, the plurality of interference layers has an average optical transmittance greater than about 85% for a first polarization state, an average optical reflectance greater than about 80% for an orthogonal second polarization state, and an average optical transmittance less than about 0.2% for the second polarization state.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Adam D. Haag, Timothy J. Nevitt, Carl A. Stover, Andrew J. Ouderkirk, Robert D. Taylor, Zhaohui Yang
  • Publication number: 20200174170
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display in an “on-glass” configuration, laminated to a back absorbing polarizer of the display, without any light diffusing layer or air gap in such laminate. The reflective polarizer is a tentered-one-packet (TOP) multilayer film, having only one packet of microlayers, and oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The thickness profile of optical repeat units (ORUs) in the microlayer packet is tailored to avoid excessive perceived color at normal and oblique angles. Color at high oblique angles in the white state of the display is reduced by positioning thicker ORUs closer to the absorbing polarizer, and by ensuring that, with regard to a boxcar average of the ORU thickness profile, the average slope from an ORU(600) to an ORU(645) does not exceed 1.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Inventors: Timothy J. Nevitt, Carl A. Stover, Gilles J. Benoit, Kristopher J. Derks, Zhaohui Yang
  • Publication number: 20200166684
    Abstract: Rolls of film are described. In particular, rolls of film including multilayer birefringent polarizers having low pass axis variation are described. The multilayer birefringent polarizers have low pass axis variation across a full crossweb width of the roll of film.
    Type: Application
    Filed: June 26, 2018
    Publication date: May 28, 2020
    Inventors: Kristy A. Gillette, Matthew B. Johnson, Carl A. Stover
  • Publication number: 20200150329
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display without any high haze light diffusing layer or air gap between the reflective polarizer and the back absorbing polarizer of the display. The reflective polarizer has only one packet of microlayers, and is oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The microlayers in the packet have a layer thickness profile suitably tailored to avoid excessive perceived color at normal and oblique angles. A laminate made by combining this type of reflective polarizer with an absorbing polarizer, without an air gap or any high haze light diffusing layer or structure between the polarizers, can be used and incorporated into a liquid crystal display or the like with adequate color performance both at normal incidence and oblique incidence up to a polar angle of 60 degrees.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Carl A. Stover, Kristopher J. Derks, Timothy J. Nevitt, Gilles J. Benoit
  • Patent number: 10613264
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display in an “on-glass” configuration, laminated to a back absorbing polarizer of the display, without any light diffusing layer or air gap in such laminate. The reflective polarizer is a tentered-one-packet (TOP) multilayer film, having only one packet of microlayers, and oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The thickness profile of optical repeat units (ORUs) in the microlayer packet is tailored to avoid excessive perceived color at normal and oblique angles. Color at high oblique angles in the white state of the display is reduced by positioning thicker ORUs closer to the absorbing polarizer, and by ensuring that, with regard to a boxcar average of the ORU thickness profile, the average slope from an ORU(600) to an ORU(645) does not exceed 1.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 7, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy J. Nevitt, Carl A. Stover, Gilles J. Benoit, Kristopher J. Derks, Zhaohui Yang
  • Publication number: 20200055400
    Abstract: Vehicle projection assemblies are described. In particular, vehicle projection assemblies within a housing including a projection module, and selective reflective polarizing element are described. Particular selective reflective polarizing elements may enable advantageous configurations for such vehicle projection assemblies.
    Type: Application
    Filed: March 6, 2018
    Publication date: February 20, 2020
    Inventors: William F. Edmonds, Matthew B. Johnson, Carl A. Stover
  • Patent number: 10545273
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display without any high haze light diffusing layer or air gap between the reflective polarizer and the back absorbing polarizer of the display. The reflective polarizer has only one packet of microlayers, and is oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The microlayers in the packet have a layer thickness profile suitably tailored to avoid excessive perceived color at normal and oblique angles. A laminate made by combining this type of reflective polarizer with an absorbing polarizer, without an air gap or any high haze light diffusing layer or structure between the polarizers, can be used and incorporated into a liquid crystal display or the like with adequate color performance both at normal incidence and oblique incidence up to a polar angle of 60 degrees.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 28, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Carl A. Stover, Kristopher J. Derks, Timothy J. Nevitt, Gilles J. Benoit
  • Publication number: 20190346605
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display in an “on-glass” configuration, laminated to a back absorbing polarizer of the display, without any light diffusing layer or air gap in such laminate. The reflective polarizer is a tentered-one-packet (TOP) multilayer film, having only one packet of microlayers, and oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The thickness profile of optical repeat units (ORUs) in the microlayer packet is tailored to avoid excessive perceived color at normal and oblique angles. Color at high oblique angles in the white state of the display is reduced by positioning thicker ORUs closer to the absorbing polarizer, and by ensuring that, with regard to a boxcar average of the ORU thickness profile, the average slope from an ORU(600) to an ORU(645) does not exceed 1.
    Type: Application
    Filed: September 12, 2017
    Publication date: November 14, 2019
    Inventors: Timothy J. Nevitt, Carl A. Stover, Gilles J. Benoit, Kristopher J. Derks, Zhaohui Yang
  • Publication number: 20190196076
    Abstract: A polarizer stack including an absorbing polarizer and a multilayer polymeric reflective polarizer bonded together is described. The absorbing polarizer has a first block axis and the reflective polarizer has a second block axis substantially parallel to the first block axis. The reflective polarizer has a shrinkage in a range of 0.4 percent to 3 percent along the second block axis when the reflective polarizer is heated at 95° C. for 40 minutes.
    Type: Application
    Filed: May 16, 2017
    Publication date: June 27, 2019
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carl A. STOVER, Kristopher J. DERKS
  • Patent number: 10228502
    Abstract: The present disclosure is directed to optical bodies including a first optical film, a second optical film and one or more strippable boundary layers disposed between the first and second optical films. Each major surface of a strippable boundary layer may be disposed adjacent to an optical film or another strippable boundary layer. At least one of the first and second optical films may include a reflective polarizer. The present disclosure is also directed to methods of processing such optical bodies.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: March 12, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks
  • Publication number: 20180348418
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display without any high haze light diffusing layer or air gap between the reflective polarizer and the back absorbing polarizer of the display. The reflective polarizer has only one packet of microlayers, and is oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The microlayers in the packet have a layer thickness profile suitably tailored to avoid excessive perceived color at normal and oblique angles. A laminate made by combining this type of reflective polarizer with an absorbing polarizer, without an air gap or any high haze light diffusing layer or structure between the polarizers, can be used and incorporated into a liquid crystal display or the like with adequate color performance both at normal incidence and oblique incidence up to a polar angle of 60 degrees.
    Type: Application
    Filed: November 16, 2016
    Publication date: December 6, 2018
    Inventors: Carl A. Stover, Kristopher J. Derks, Timothy J. Nevitt, Gilles J. Benoit
  • Publication number: 20170315267
    Abstract: Optical bodies are disclosed that include a first optical film, a second optical film and at least one rough strippable boundary layer disposed between the first and second optical films. Also disclosed are optical bodies including a strippable boundary layer disposed between the first and second optical films and including a first polymer and a second polymer that is substantially immiscible in the first polymer. The present disclosure also provides methods of processing optical bodies that include stretching the optical bodies.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffrey N. Jackson, Kristopher J. Derks, Michael F. Weber, Anna A. Kobilansky, Joan M. Strobel, Barry S. Rosell, John P. Purcell, Kevin M. Hamer, Robert D. Taylor, William B. Black, Richard J. Thompson, Gregory L. Bluem
  • Publication number: 20170227699
    Abstract: The present disclosure is directed to optical bodies including a first optical film, a second optical film and one or more strippable boundary layers disposed between the first and second optical films. Each major surface of a strippable boundary layer may be disposed adjacent to an optical film or another strippable boundary layer. At least one of the first and second optical films may include a reflective polarizer. The present disclosure is also directed to methods of processing such optical bodies.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 10, 2017
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks
  • Patent number: 9709700
    Abstract: Optical bodies are disclosed that include a first optical film, a second optical film and at least one rough strippable boundary layer disposed between the first and second optical films. Also disclosed are optical bodies including a strippable boundary layer disposed between the first and second optical films and including a first polymer and a second polymer that is substantially immiscible in the first polymer. The present disclosure also provides methods of processing optical bodies that include stretching the optical bodies.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: July 18, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks, Michael F. Weber, Anna A. Kobilansky, Joan M. Strobel, Barry S. Rosell, John P. Purcell, Kevin M. Hamer, Robert D. Taylor, William B. Black, Richard J. Thompson, Gregory L. Bluem
  • Patent number: 9561629
    Abstract: Optical bodies are disclosed that include an optical film and at least one rough strippable skin layer. The at least one rough strippable skin layer can include a continuous phase and a disperse phase. In some embodiments, the at least one rough strippable skin layer can include a first polymer, a second polymer different from the first polymer and an additional material that is substantially immiscible in at least one of the first and second polymers. In some exemplary embodiments, a surface of the at least one rough strippable skin layer adjacent to the optical film comprises a plurality of protrusions and the adjacent surface of the optical film comprises a plurality of asymmetric depressions substantially corresponding to said plurality of protrusions. Methods of making such exemplary optical bodies are also disclosed.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 7, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Timothy J. Hebrink, Carl A. Stover, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks, Michael F. Weber, Anna A. Wetzels, Joan M. Strobel, Barry S. Rosell, John P. Purcell, Kevin M. Hamer, Robert D. Taylor, William B. Black, Richard J. Thompson, Gregory L. Bluem
  • Patent number: 9546021
    Abstract: A method and apparatus for storing, transporting and distributing kegs. The apparatus comprising a keg shelving assembly with two or more stacked shelves. The shelves containing individual keg slots formed by two or more horizontally disposed rails. Stored kegs within the keg slots are accessed by a vertical sliding frame within a fixed frame vertical guidance assembly. A hinged platform is fixed to the vertical sliding frame having an open, horizontal position and a close vertical position relative to the vertical sliding frame. The apparatus further comprises a braking assembly that utilizes the downward force created by a load on the platform, to create a braking action opposing the downward force. This action allows a user to easily and efficiently lower a keg from one of the stacked shelves.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: January 17, 2017
    Assignee: Diverse Holdings, LLC
    Inventors: Carl Stover, Craig T. Jones, Dennis Weber