Patents by Inventor Carl G. Foster

Carl G. Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120133545
    Abstract: Embodiments of a collision-avoidance transponder and method for reducing collisions with an aerial hazard are generally described herein. The collision-avoidance transponder may be configured for location on an aerial hazard and may be configured to regularly transmit a signal that mimics an air traffic control (ATC) transponder reply signal. The regularly-transmitted signal may include an altitude indication, such as the pressure altitude, of the aerial hazard. A collision-avoidance and warning system on an aircraft may receive the regularly-transmitted signal and provide a warning under certain conditions to allow the pilot to avoid the aerial hazard. The collision-avoidance transponder may include an ATC-type transponder and control circuitry to cause the transponder to regularly transmit the signal that includes a pressure altitude of the aerial hazard.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: Raytheon Company
    Inventors: Thomas J. Fagan, Carl G. Foster
  • Patent number: 6389974
    Abstract: A passive proximity fuze. The inventive fuze (10) is adapted to be mounted on a munition (11) and includes a receiver (16) adapted to lock on to a signal transmitted by a target transmitter (12). The receiver (16) detects a Doppler shift in the signal as the munition approaches the target. When a closest point of approach is reached the Doppler shift changes from increasing to decreasing. The inventive fuze (10) includes a mechanism for detecting this change in the Doppler shift and provides a detonation signal in response thereto. In the illustrative embodiment, the receiver (16) is an FM receiver. The mechanism for detecting a change in the Doppler shift may be implemented with discrete analog circuitry or digital circuitry. In an illustrative analog implementation, first and second resistive/capacitive networks (R1C1 and R2C2) are employed to compute a second derivative of the Doppler shift signal output by the receiver (16).
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: May 21, 2002
    Assignee: Raytheon Company
    Inventor: Carl G. Foster
  • Patent number: 5855339
    Abstract: A system and method that covertly provides in-flight target update data to a large number of missiles. The system and method covertly guides the missiles using a transponder located on a satellite that relays encoded target update data to receivers located on each of the missiles. The target update data is derived from intelligence data acquired by a remote sensing device. The target update data is typically transmitted to the missile launch site where it is encoded and transmitted to the transponder on the satellite. The encoding is preferably accomplished using direct sequence spread spectrum/code division multiple access (CDMA) encoding produced using unique seeds that are supplied to pseudo random code generators that uniquely encode the data to be transmitted to each missile. The receivers on each of the missiles have pseudo random code generators that are loaded with the unique seeds.
    Type: Grant
    Filed: July 7, 1997
    Date of Patent: January 5, 1999
    Assignee: Raytheon Company
    Inventors: Donald C. Mead, Carl G. Foster
  • Patent number: 5605307
    Abstract: A missile is remotely controlled by a person operating with a base controller that displays an image of an aim-point target. Simultaneously, the base controller displays, as an overlay, a prosecutable target locus that represents the outer boundary of the region that may be hit by the missile, in the event that a maximum change in the guidance commands were to be introduced at that moment. The prosecutable target locus depends upon missile performance capability and the location of the missile relative to the aim-point target, which are provided to the base controller.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 25, 1997
    Assignee: Hughes Aircraft Compay
    Inventors: Loren E. Batchman, Carl G. Foster