Patents by Inventor Carl Gould

Carl Gould has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12124082
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Grant
    Filed: August 24, 2023
    Date of Patent: October 22, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 12124081
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: October 22, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Publication number: 20240310867
    Abstract: Hybrid analog-digital processing systems are described. An example of a hybrid analog-digital processing system includes photonic accelerator configured to perform matrix-vector multiplication using light. The photonic accelerator exhibits a frequency response having a first bandwidth (e.g., less than 3 GHz). The hybrid analog-digital processing system further includes a plurality of analog-to-digital converters (ADCs) coupled to the photonic accelerator, and a plurality of digital equalizers coupled to the plurality of ADCs, wherein the digital equalizers are configured to set a frequency response of the hybrid analog-digital processing system to a second bandwidth greater than the first bandwidth.
    Type: Application
    Filed: May 28, 2024
    Publication date: September 19, 2024
    Applicant: Lightmatter, Inc.
    Inventors: Michael Gould, Carl Ramey, Nicholas C. Harris, Darius Bunandar
  • Patent number: 12092867
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Grant
    Filed: December 1, 2023
    Date of Patent: September 17, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 12092866
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Grant
    Filed: August 24, 2023
    Date of Patent: September 17, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 12038777
    Abstract: Hybrid analog-digital processing systems are described. An example of a hybrid analog-digital processing system includes photonic accelerator configured to perform matrix-vector multiplication using light. The photonic accelerator exhibits a frequency response having a first bandwidth (e.g., less than 3 GHz). The hybrid analog-digital processing system further includes a plurality of analog-to-digital converters (ADCs) coupled to the photonic accelerator, and a plurality of digital equalizers coupled to the plurality of ADCs, wherein the digital equalizers are configured to set a frequency response of the hybrid analog-digital processing system to a second bandwidth greater than the first bandwidth.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: July 16, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Michael Gould, Carl Ramey, Nicholas C. Harris, Darius Bunandar
  • Patent number: 12038604
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Grant
    Filed: December 1, 2023
    Date of Patent: July 16, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 10012353
    Abstract: A two-component luminaire for illuminating an architectural space includes a housing with a panel that faces the architectural space. A peripheral edge of the housing, having first and second edge segments, forms an output aperture that faces the architectural space. A plane bisecting the output aperture defines a boundary between an indirect lighting region and a direct lighting region. The luminaire includes a primary optical subsystem arranged within the housing so as to be hidden from the direct lighting region by the first panel section, and configured to generate and emit light, through the output aperture, solely into the indirect lighting region, and a secondary optical subsystem, disposed within the housing and configured to generate and emit light through the output aperture.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: July 3, 2018
    Assignee: ABL IP Holding LLC
    Inventors: Carl Gould, Peter K. Nelson, Chris Sorensen, Chris Slaughter, Kevin F. Leadford
  • Patent number: 9927079
    Abstract: Embodiments of the invention are directed to wall recessed two-component luminaires. The two components can include a primary optical subsystem and a secondary optical subsystem. The primary optical subsystem can provide indirect lighting, illuminate an architectural space upward toward a ceiling, and/or have greater luminous flux than the secondary optical subsystem. The secondary optical subsystem can provide direct lighting, illuminate an architectural space horizontally and/or downward, provide lit appearance, provide direct view color and/or color gradients, provide direct view luminance and/or luminous gradients, and/or provide lighting for ambience.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 27, 2018
    Assignee: ABL IP Holding LLC
    Inventors: Carl Gould, Peter K. Nelson, Chris Sorensen, Chris Slaughter, Kevin F. Leadford
  • Patent number: 9360180
    Abstract: Embodiments of the invention include a luminaire with an elongated luminaire body and at least one longitudinal luminaire flange each of which extend longitudinally from one end of the luminaire body. The luminaire body being shorter than the luminaire length measured from the ends of both longitudinal luminaire flanges. The luminaire body can include a channel with a plurality of light sources, optical elements, power lines, and/or control lines. A connector is also disclosed according to some embodiments of the invention that can be used to physically and/or electrically couple two luminaires together. The connector can couple the luminaires at a T-bar.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: June 7, 2016
    Assignee: ABL IP Holding LLC
    Inventors: Chris Sorensen, Peter K. Nelson, Carl Gould
  • Publication number: 20150226392
    Abstract: A two-component luminaire for illuminating an architectural space includes a housing with a panel that faces the architectural space. A peripheral edge of the housing, having first and second edge segments, forms an output aperture that faces the architectural space. A plane bisecting the output aperture defines a boundary between an indirect lighting region and a direct lighting region. The luminaire includes a primary optical subsystem arranged within the housing so as to be hidden from the direct lighting region by the first panel section, and configured to generate and emit light, through the output aperture, solely into the indirect lighting region, and a secondary optical subsystem, disposed within the housing and configured to generate and emit light through the output aperture.
    Type: Application
    Filed: September 11, 2013
    Publication date: August 13, 2015
    Inventors: Carl Gould, Peter K. Nelson, Chris Sorensen, Chris Slaughter, Kevin F. Leadford
  • Patent number: 8939634
    Abstract: Embodiments of the invention provide for a lighting system for illuminating aisles with shelving. A rail can include a plurality of LEDs that extend along the length of the rail. The rail can be coupled with a node that includes various components along with an egress light source. The LEDs can be used to primarily illuminate the shelving on both or one side of the aisle. The egress light can be used to illuminate the aisle during times of emergency, at night, or when egress may be required.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: January 27, 2015
    Assignee: ABL IP Holding LLC
    Inventors: Kevin Franklin Leadford, Carl Gould, Peter K. Nelson
  • Patent number: 8820964
    Abstract: Embodiments of the invention are directed toward a lighting system that includes a primary optic having a length, a plurality of discrete light sources disposed along an axis, and a ribbed refractor. The ribbed refractor can include a plurality of linear ribs that are arranged substantially perpendicular to the line of discrete light sources. The ribbed refractor can refract light from the plurality of discrete light sources into a continuous line of light as viewed along the length of the primary optic, thereby masking the discrete nature of the light sources. In some embodiments, the ribbed refractor does not substantially alter the photometric distribution of light perpendicular to the axis.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 2, 2014
    Assignee: ABL IP Holding LLC
    Inventor: Carl Gould
  • Publication number: 20140070724
    Abstract: Embodiments of the invention are directed to wall recessed two-component luminaires. The two components can include a primary optical subsystem and a secondary optical subsystem. The primary optical subsystem can provide indirect lighting, illuminate an architectural space upward toward a ceiling, and/or have greater luminous flux than the secondary optical subsystem. The secondary optical subsystem can provide direct lighting, illuminate an architectural space horizontally and/or downward, provide lit appearance, provide direct view color and/or color gradients, provide direct view luminance and/or luminous gradients, and/or provide lighting for ambience.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 13, 2014
    Inventors: Carl Gould, Peter K. Nelson, Chris Sorensen, Chris Slaughter, Kevin F. Leadford
  • Publication number: 20140071673
    Abstract: Embodiments of the invention are directed to wall recessed two-component luminaires. The two components can include a primary optical subsystem and a secondary optical subsystem. The primary optical subsystem can provide indirect lighting, illuminate an architectural space upward toward a ceiling, and/or have greater luminous flux than the secondary optical subsystem. The secondary optical subsystem can provide direct lighting, illuminate an architectural space horizontally and/or downward, provide lit appearance, provide direct view color and/or color gradients, provide direct view luminance and/or luminous gradients, and/or provide lighting for ambience.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 13, 2014
    Applicant: ABL IP Holding LLC
    Inventors: Carl Gould, Peter K. Nelson, Chris Sorensen, Chris Slaughter, Kevin F. Leadford
  • Publication number: 20130294061
    Abstract: Embodiments of the invention include a luminaire with an elongated luminaire body and at least one longitudinal luminaire flange each of which extend longitudinally from one end of the luminaire body. The luminaire body being shorter than the luminaire length measured from the ends of both longitudinal luminaire flanges. The luminaire body can include a channel with a plurality of light sources, optical elements, power lines, and/or control lines. A connector is also disclosed according to some embodiments of the invention that can be used to physically and/or electrically couple two luminaires together. The connector can couple the luminaires at a T-bar.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 7, 2013
    Inventors: Chris Sorensen, Peter K. Nelson, Carl Gould
  • Publication number: 20130271978
    Abstract: Embodiments of the invention include luminaires with a large-scale prism. In some embodiments, a large-scale prism can be any prism with a base having the smallest dimension greater than one half of an inch. In some embodiments, a large-scale prism can be any prism with a base having the smallest dimension between two and four inches. At these large-scales, the geometry of the individual prism can be easily appreciated through casual observation. Use of large-scale prisms can provide a light without high angle glare.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Inventor: Carl Gould
  • Publication number: 20130033863
    Abstract: Embodiments of the invention are directed toward a lighting system that includes a primary optic having a length, a plurality of discrete light sources disposed along an axis, and a ribbed refractor. The ribbed refractor can include a plurality of linear ribs that are arranged substantially perpendicular to the line of discrete light sources. The ribbed refractor can refract light from the plurality of discrete light sources into a continuous line of light as viewed along the length of the primary optic, thereby masking the discrete nature of the light sources. In some embodiments, the ribbed refractor does not substantially alter the photometric distribution of light perpendicular to the axis.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Inventor: Carl Gould
  • Publication number: 20120063138
    Abstract: Embodiments of the invention provide for a lighting system for illuminating aisles with shelving. A rail can include a plurality of LEDs that extend along the length of the rail. The rail can be coupled with a node that includes various components along with an egress light source. The LEDs can be used to primarily illuminate the shelving on both or one side of the aisle. The egress light can be used to illuminate the aisle during times of emergency, at night, or when egress may be required.
    Type: Application
    Filed: October 26, 2011
    Publication date: March 15, 2012
    Inventors: Kevin Franklin Leadford, Carl Gould, Peter K. Nelson
  • Publication number: 20120002414
    Abstract: Embodiments of the invention provide for a linear lighting system with a plurality of discrete light sources. Other embodiments of the invention include heat dissipation techniques and apparatus for a linear light system. Other embodiments of the invention include a two component lighting system that includes rails and nodes. In some embodiments, the lighting and control aspects can be divided between the rail and node. In yet other embodiments a linear lens providing a unique photometric distribution is provided.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 5, 2012
    Inventor: Carl Gould