Patents by Inventor Carl H. June

Carl H. June has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220154190
    Abstract: The present invention relates to compositions and methods for generating a modified T cell with a nucleic acid capable of downregulating endogenous gene expression selected from the group consisting of TCR ? chain, TCR ? chain, beta-2 microglobulin and FAS further comprising a nucleic acid encoding a modified T cell receptor (TCR) comprising affinity for a surface antigen on a target cell or an electroporated nucleic acid encoding a chimeric antigen receptor (CAR). Also included are methods and pharmaceutical compositions comprising the modified T cell for adoptive therapy and treating a condition, such as an autoimmune disease.
    Type: Application
    Filed: December 14, 2021
    Publication date: May 19, 2022
    Inventors: Yangbing Zhao, Jiangtao Ren, Xiaojun Liu, Carl H. June
  • Patent number: 11332511
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: May 17, 2022
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Saar Gill, Michael Klichinsky, Carl H. June
  • Publication number: 20220145306
    Abstract: The present invention relates to compositions and methods for generating a modified T cell with a nucleic acid capable of downregulating endogenous gene expression selected from the group consisting of TCR ? chain, TCR ? chain, beta-2 microglobulin and FAS further comprising a nucleic acid encoding a modified T cell receptor (TCR) comprising affinity for a surface antigen on a target cell or an electroporated nucleic acid encoding a chimeric antigen receptor (CAR). Also included are methods and pharmaceutical compositions comprising the modified T cell for adoptive therapy and treating a condition, such as an autoimmune disease.
    Type: Application
    Filed: November 24, 2021
    Publication date: May 12, 2022
    Inventors: Yangbing Zhao, Jiangtao Ren, Xiaojun Liu, Carl H. June
  • Patent number: 11325963
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: May 10, 2022
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Saar Gill, Michael Klichinsky, Carl H. June
  • Patent number: 11319358
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: May 3, 2022
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Saar Gill, Michael Klichinsky, Carl H. June
  • Patent number: 11306133
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: April 19, 2022
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Saar Gill, Michael Klichinsky, Carl H. June
  • Patent number: 11306134
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: April 19, 2022
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Saar Gill, Michael Klichinsky, Carl H. June
  • Patent number: 11299536
    Abstract: The present invention provides compositions and methods for generating a genetically modified T cells comprising a chimeric antigen receptor (CAR) having an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain, wherein the T cell exhibits prolonged exponential expansion in culture that is ligand independent and independent of the addition of exogenous cytokines or feeder cells.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 12, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Matthew J. Frigault, Yangbing Zhao, John Scholler, Carl H. June
  • Publication number: 20220089750
    Abstract: The invention provides compositions and methods for treating cancer by using immune effector cells (e.g., T cells, NK cells) engineered to conditionally express an agent which enhances the immune effector response of an immune effector cell that expresses a Chimeric Antigen Receptor (CAR). The conditional agents described herein include agents that target a cancer associated antigen, e.g., a CAR, agents that inhibit one or more checkpoint inhibitors of the immune response, and a cytokine.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 24, 2022
    Inventors: Carl H. June, Daniel J. Powell, JR.
  • Patent number: 11274298
    Abstract: The present invention relates to compositions and methods for generating RNA Chimeric Antigen Receptor (CAR) transfected T cells. The RNA-engineered T cells can be used in adoptive therapy to treat cancer.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 15, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Carl H. June, Yangbing Zhao
  • Patent number: 11273219
    Abstract: The present invention provides compositions and methods for treating cancer in a patient. In one embodiment, the method comprises a first-line therapy comprising administering to a patient in need thereof a genetically modified T cell expressing a CAR wherein the CAR comprises an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain and monitoring the levels of cytokines in the patient post T cell infusion to determine the type of second-line of therapy appropriate for treating the patient as a consequence of the presence of the CART cell in the patient.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: March 15, 2022
    Assignees: The Trustees of the University of Pennsylvania, The Children's Hospital of Philadelphia
    Inventors: Carl H. June, Bruce L. Levine, Michael D. Kalos, Stephan Grupp
  • Publication number: 20220073639
    Abstract: The present invention includes compositions and methods for treating T cell lymphomas and leukemias. In certain aspects, the compositions and methods include CAR T cells targeting CD2, CD5, or CD7 and modified cells wherein CD2, CD5, or CD7 has been knocked-out.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 10, 2022
    Inventors: Marco RUELLA, Saar GILL, Carl H. JUNE, Avery D. POSEY, Daniel J. POWELL
  • Publication number: 20220064316
    Abstract: The invention provides compositions and methods for treating diseases associated with expression of BCMA. The invention also relates to chimeric antigen receptor (CAR) specific to BCMA vectors encoding the same, and recombinant T cells comprising the BCMA CAR. The invention also includes methods of administering a genetically modified T cell expressing a CAR that comprises a BCMA binding domain.
    Type: Application
    Filed: June 25, 2021
    Publication date: March 3, 2022
    Inventors: Jennifer Brogdon, Eugene Choi, Hilmar Erhard Ebersbach, David Jonathan Glass, Heather Huet, Carl H. June, Joan Mannick, Michael C. Milone, Leon Murphy, Gabriela Plesa, Celeste Richardson, Marco Ruella, Reshma Singh, Yongqiang Wang, Qilong Wu
  • Publication number: 20220056116
    Abstract: The present invention provides compositions and methods for generating a genetically modified T cells comprising a chimeric antigen receptor (CAR) having an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain, wherein the T cell exhibits prolonged exponential expansion in culture that is ligand independent and independent of the addition of exogenous cytokines or feeder cells.
    Type: Application
    Filed: May 12, 2021
    Publication date: February 24, 2022
    Inventors: Matthew J. Frigault, Yangbing Zhao, John Scholler, Carl H. June
  • Publication number: 20220041688
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Application
    Filed: September 16, 2021
    Publication date: February 10, 2022
    Inventors: Saar GILL, Michael KLICHINSKY, Carl H. JUNE
  • Publication number: 20220033468
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Application
    Filed: September 16, 2021
    Publication date: February 3, 2022
    Inventors: Saar GILL, Michael KLICHINSKY, Carl H. JUNE
  • Publication number: 20220033465
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Application
    Filed: September 16, 2021
    Publication date: February 3, 2022
    Inventors: Saar GILL, Michael KLICHINSKY, Carl H. JUNE
  • Publication number: 20220033467
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Application
    Filed: September 16, 2021
    Publication date: February 3, 2022
    Inventors: Saar GILL, Michael KLICHINSKY, Carl H. JUNE
  • Publication number: 20220033466
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Application
    Filed: September 16, 2021
    Publication date: February 3, 2022
    Inventors: Saar GILL, Michael KLICHINSKY, Carl H. JUNE
  • Publication number: 20220002376
    Abstract: The present invention includes methods and compositions for treating cancer, whether a solid tumor or a hematologic malignancy. By expressing a chimeric antigen receptor in a monocyte, macrophage or dendritic cell, the modified cell is recruited to the tumor microenvironment where it acts as a potent immune effector by infiltrating the tumor and killing the target cells. One aspect includes a modified cell and pharmaceutical compositions comprising the modified cell for adoptive cell therapy and treating a disease or condition associated with immunosuppression.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Saar GILL, Michael KLICHINSKY, Carl H. JUNE