Patents by Inventor Carl Hardin

Carl Hardin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240063928
    Abstract: In some implementations, a mobile device may perform a plurality of signal strength measurements of a radio frequency (RF) signal transmitted by a satellite, wherein performing the plurality of signal strength measurements occurs over a period of time during which the mobile device is subject to a movement. The mobile device may determine, for each signal strength measurement of the plurality of signal strength measurements, a respective orientation of the mobile device corresponding to when the respective signal strength measurement was performed. The mobile device may determine a target orientation for the satellite-based communications based at least in part on a value of a particular signal strength measurement of the plurality of signal strength measurements and the respective orientation of the mobile device corresponding to the particular signal strength measurement. The mobile device may provide guidance for rotating the mobile device to the target orientation.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Udayan BHAWNANI, Francesco GRILLI, Junsheng HAN, Carl HARDIN, Jonathan KIES, Victor KULIK, Vanitha Aravamudhan KUMAR, Nirupama LOCANINDI, Vinay PARADKAR, Manmeet SINGH
  • Publication number: 20240063893
    Abstract: In some implementations, a mobile device may determine a set of target orientations of the mobile device in which an antenna lobe of the mobile device is pointed toward the satellite, the set of target orientations based on: an orientation of the antenna lobe relative to the mobile device, and a location of the satellite relative to the mobile device. The mobile device may determine a current orientation of the mobile device. The mobile device may provide, at a user interface (UI) of the mobile device, guidance for rotating the mobile device from the current orientation to an orientation within the set of target orientations.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Francesco GRILLI, Kannan MUTHURAMAN, Udayan BHAWNANI, Jonathan KIES, Manmeet SINGH, Junsheng HAN, Carl HARDIN, Vanitha Aravamudhan KUMAR, Nirupama LOCANINDI, Vinay PARADKAR, Victor KULIK
  • Patent number: 11889436
    Abstract: The transmission and reception group delay in a front end structure of a mobile device may be determined using closed loop calibration. The closed loop may be a near field radiated closed loop between pairs of antennas in an antenna array of the mobile device. The delay based on time of transmission and time of reception may be measured for a plurality of pairs of antennas, from which the transmit and receive group delay within a single path may be determined. The propagation delay of the signal between antennas may be included in the group delay calibration for increased accuracy. In another implementation, a conducted closed loop, e.g., in the transceiver or in a radio frequency switching network may be used to calibrate the group delay. Pre-characterization of the delay caused by components between the closed loop and antennas may be included in the group delay calibration for increased accuracy.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: January 30, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Jay King, Alexander Dorosenco, Muhammad Sayed Khairy Abdelghaffar, Joseph Binamira Soriaga, Carl Hardin, Alexandros Manolakos, James Krysl, Michael Allen Kongelf, Krishna Kiran Mukkavilli, Tingfang Ji, Joseph Patrick Burke
  • Patent number: 11856528
    Abstract: Methods, systems, and devices for wireless communications are described. Some wireless communications systems may support adaptation of digital pre-distortion (DPD) coefficients based on a temperature of a user equipment (UE). The UE may determine a power offset value based on a first temperature value associated with a training procedure for the UE, a second temperature value associated with the UE, and a constant value. The training procedure may be associated with multiple sets of coefficients for the UE. The UE may apply the power offset value to a transmission power level for transmission of a message. The UE may determine a set of coefficients of the multiple sets of coefficients based on the training procedure and the power offset value applied to the transmission power level. The UE may apply the coefficients to a DPD engine of the UE to generate the message for transmission at the transmission power level.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: December 26, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Igor Gutman, Robert Zokaim, Oren Matsrafi, Yehezkel Hadid, Ghaith Shabsigh, Rahul Malik, Carl Hardin, Damin Cao, Michael Lee McCloud
  • Patent number: 11711120
    Abstract: Various aspects of the present disclosure generally relate to wireless communication. A wireless communication device may have an apparatus that aligns the non-linearity between transmit chains of the wireless communication device that are driven by the same digital port. The apparatus may adjust an amplification power out or an amplification saturated power to adjust a ratio between the amplification saturated power and the amplification power out for one or more transmit chains of the wireless communication device. The apparatus may adjust the ratios of transmit chains to align the ratios of the transmit chains for more consistent management of non-linear characteristics of the chain components. Numerous other aspects are described.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: July 25, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Alexander Sverdlov, Igor Gutman, Carl Hardin, Michael Lee McCloud, Robert Zokaim
  • Publication number: 20230224825
    Abstract: Methods, systems, and devices for wireless communications are described. Some wireless communications systems may support adaptation of digital pre-distortion (DPD) coefficients based on a temperature of a user equipment (UE). The UE may determine a power offset value based on a first temperature value associated with a training procedure for the UE, a second temperature value associated with the UE, and a constant value. The training procedure may be associated with multiple sets of coefficients for the UE. The UE may apply the power offset value to a transmission power level for transmission of a message. The UE may determine a set of coefficients of the multiple sets of coefficients based on the training procedure and the power offset value applied to the transmission power level. The UE may apply the coefficients to a DPD engine of the UE to generate the message for transmission at the transmission power level.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 13, 2023
    Inventors: Igor Gutman, Robert Zokaim, Oren Matsrafi, Yehezkel Hadid, Ghaith Shabsigh, Rahul Malik, Carl Hardin, Damin Cao, Michael Lee McCloud
  • Publication number: 20230223973
    Abstract: Methods, systems, and devices for wireless communications are described. For example, a transmitting wireless device, such as a user equipment or a base station, may apply a first set of digital pre-distortion (DPD) coefficients to a plurality of antenna elements to form a first transmit beam. The wireless device may determine to switch from using the first transmit beam to using a second transmit beam that is different from the first transmit beam and may apply a second set of DPD coefficients to the plurality of antenna elements to form the second transmit beam, where the second set of DPD coefficients is different from the first set of DPD coefficients. The wireless device may transmit signaling using the second transmit beam based at least in part on applying the second set of DPD coefficients.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 13, 2023
    Inventors: Igor Gutman, Carl HARDIN, Yehezkel HADID, Robert ZOKAIM
  • Patent number: 11658692
    Abstract: Methods, systems, and devices for wireless communications are described. For example, a transmitting wireless device, such as a user equipment or a base station, may apply a first set of digital pre-distortion (DPD) coefficients to a plurality of antenna elements to form a first transmit beam. The wireless device may determine to switch from using the first transmit beam to using a second transmit beam that is different from the first transmit beam and may apply a second set of DPD coefficients to the plurality of antenna elements to form the second transmit beam, where the second set of DPD coefficients is different from the first set of DPD coefficients. The wireless device may transmit signaling using the second transmit beam based at least in part on applying the second set of DPD coefficients.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: May 23, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Igor Gutman, Carl Hardin, Yehezkel Hadid, Robert Zokaim
  • Patent number: 11622281
    Abstract: A user equipment (UE) includes a first communication component configured to use a first frequency band, such as ultra-wide band (UWB), and a second communication component configured to use an intermediate frequency (IF) band that overlaps with the UWB band, such as an IF millimeter wave (mmWave) band. The second communication component conducts an IF signal along an internal signal conduction line that may interfere with UWB processing. A processor of the UE is configured to detect an indication of such interference, and, in response to the indication of interference, control the second communication component to adjust a characteristic of the IF band signal to mitigate the interference, such as by reducing its signal strength. The amount by which the IF band signal strength is reduced may be controlled to achieve a desired tradeoff between various performance metrics, such as power consumption and quality of service.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: April 4, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Carl Hardin, Brian Clarke Banister, Shrenik Patel, Michael Kohlmann, Liang Zhao, Le Nguyen Luong, Tevfik Yucek, Roland Rick, Shriram Gurumoorthy, Francis Ngai
  • Patent number: 11502708
    Abstract: Certain aspects of the present disclosure provide techniques for training a digital pre-distorter (DPD) using real-time over-the-air transmissions and receptions by a user equipment (UE). A method for training the DPD generally includes transmitting a signal, generated by a transmitter front end, via a first port; sampling the signal, received over the air, at a second port; performing signal processing cleaning (e.g., synchronization, linear over-the-air channel estimation and equalization); calculating coefficients for a DPD; and configuring the DPD with the coefficients, for use in digitally pre-distorting sub sequent transmissions.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: November 15, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Igor Gutman, Yehezkel Hadid, Carl Hardin, Sang-June Park, Mendel Menachem Aizner, Gideon Shlomo Kutz
  • Publication number: 20220360283
    Abstract: Methods, systems, and devices for wireless communications are described. For example, a transmitting wireless device, such as a user equipment or a base station, may apply a first set of digital pre-distortion (DPD) coefficients to a plurality of antenna elements to form a first transmit beam. The wireless device may determine to switch from using the first transmit beam to using a second transmit beam that is different from the first transmit beam and may apply a second set of DPD coefficients to the plurality of antenna elements to form the second transmit beam, where the second set of DPD coefficients is different from the first set of DPD coefficients. The wireless device may transmit signaling using the second transmit beam based at least in part on applying the second set of DPD coefficients.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 10, 2022
    Inventors: Igor Gutman, Carl Hardin, Yehezkel Hadid, Robert Zokaim
  • Publication number: 20220053435
    Abstract: The transmission and reception group delay in a front end structure of a mobile device may be determined using closed loop calibration. The closed loop may be a near field radiated closed loop between pairs of antennas in an antenna array of the mobile device. The delay based on time of transmission and time of reception may be measured for a plurality of pairs of antennas, from which the transmit and receive group delay within a single path may be determined. The propagation delay of the signal between antennas may be included in the group delay calibration for increased accuracy. In another implementation, a conducted closed loop, e.g., in the transceiver or in a radio frequency switching network may be used to calibrate the group delay. Pre-characterization of the delay caused by components between the closed loop and antennas may be included in the group delay calibration for increased accuracy.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 17, 2022
    Inventors: Jay KING, Alexander Dorosenco, Muhammad Sayed Khairy ABDELGHAFFAR, Joseph Binamira SORIAGA, Carl HARDIN, Alexandros MANOLAKOS, James KRYSL, Michael Allen KONGELF, Krishna Kiran MUKKAVILLI, Tingfang JI, Joseph Patrick BURKE
  • Patent number: 11202264
    Abstract: Some techniques and apparatuses described herein protect components of a user equipment (UE), such as a low noise amplifier (LNA), from internal interference. For example, the LNA may be disconnected from a receive chain during periods of high internal interference, and may be reconnected to the receive chain during periods of low internal interference. Furthermore, some techniques and apparatuses described herein improve performance by adjusting operations of the UE to account for and/or offset increased internal interference due to a receive chain that does not include a surface acoustic wave (SAW) filter to remove unwanted radio frequency signals. For example, one or more operations of a baseband processor may be modified to account for the increased internal interference. Additionally, or alternatively, reporting of channel state information may be modified to account for increased internal interference of the UE. Additional details are described herein.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: December 14, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Steven Charles Ciccarelli, Vikas Mahajan, Tae Min Kim, Supratik Bhattacharjee, Chitaranjan Pelur Sukumar, Ashok Mantravadi, Pooyan Amini, Alberto Rico Alvarino, Carl Hardin
  • Publication number: 20210328609
    Abstract: Certain aspects of the present disclosure provide techniques for training a digital pre-distorter (DPD) using real-time over-the-air transmissions and receptions by a user equipment (UE). A method for training the DPD generally includes transmitting a signal, generated by a transmitter front end, via a first port; sampling the signal, received over the air, at a second port; performing signal processing cleaning (e.g., synchronization, linear over-the-air channel estimation and equalization); calculating coefficients for a DPD; and configuring the DPD with the coefficients, for use in digitally pre-distorting sub sequent transmissions.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 21, 2021
    Inventors: Igor GUTMAN, Yehezkel HADID, Carl HARDIN, Sang-June PARK, Mendel Menachem AIZNER, Gideon Shlomo KUTZ
  • Publication number: 20210250775
    Abstract: A user equipment (UE) includes a first communication component configured to use a first frequency band, such as ultra-wide band (UWB), and a second communication component configured to use an intermediate frequency (IF) band that overlaps with the UWB band, such as an IF millimeter wave (mmWave) band. The second communication component conducts an IF signal along an internal signal conduction line that may interfere with UWB processing. A processor of the UE is configured to detect an indication of such interference, and, in response to the indication of interference, control the second communication component to adjust a characteristic of the IF band signal to mitigate the interference, such as by reducing its signal strength. The amount by which the IF band signal strength is reduced may be controlled to achieve a desired tradeoff between various performance metrics, such as power consumption and quality of service.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 12, 2021
    Inventors: Carl HARDIN, Brian Clarke BANISTER, Shrenik PATEL, Michael KOHLMANN, Liang ZHAO, Le Nguyen LUONG, Tevfik YUCEK, Roland RICK, Shriram GURUMOORTHY, Francis NGAI
  • Patent number: 10931498
    Abstract: Phase variations between a transmitter (TX) waveform and a receiver (RX) waveform produced by a TX Phase-Locked-Loop (PLL) and a RX PLL, respectively, is a source of error in processing delay calibration used, e.g., in Round Trip Time (RTT) estimation. While a TX waveform and a RX waveform have a constant phase delay while in steady state conditions, during transient times, e.g., at start up or reset, the phase delay may vary by as much as ±180°, which at baseband frequencies of 50 MHz, introduces a random delay variations of as much as ±10 nsec, which is undesirable for fine position estimation using RTT. The phase delay variation between the TX waveform and RX waveform may be reduced or eliminated using a phase correction signal generated using the output signals of the TX PLL and RX PLL.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: February 23, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Alexander Dorosenco, Carl Hardin, Joseph Patrick Burke, Joseph Binamira Soriaga, Jay King
  • Publication number: 20210044472
    Abstract: Phase variations between a transmitter (TX) waveform and a receiver (RX) waveform produced by a TX Phase-Locked-Loop (PLL) and a RX PLL, respectively, is a source of error in processing delay calibration used, e.g., in Round Trip Time (RTT) estimation. While a TX waveform and a RX waveform have a constant phase delay while in steady state conditions, during transient times, e.g., at start up or reset, the phase delay may vary by as much as ±180°, which at baseband frequencies of 50 MHz, introduces a random delay variations of as much as ±10 nsec, which is undesirable for fine position estimation using RTT. The phase delay variation between the TX waveform and RX waveform may be reduced or eliminated using a phase correction signal generated using the output signals of the TX PLL and RX PLL.
    Type: Application
    Filed: November 13, 2019
    Publication date: February 11, 2021
    Inventors: Alexander DOROSENCO, Carl HARDIN, Joseph Patrick BURKE, Joseph Binamira SORIAGA, Jay KING
  • Publication number: 20200037264
    Abstract: Some techniques and apparatuses described herein protect components of a user equipment (UE), such as a low noise amplifier (LNA), from internal interference. For example, the LNA may be disconnected from a receive chain during periods of high internal interference, and may be reconnected to the receive chain during periods of low internal interference. Furthermore, some techniques and apparatuses described herein improve performance by adjusting operations of the UE to account for and/or offset increased internal interference due to a receive chain that does not include a surface acoustic wave (SAW) filter to remove unwanted radio frequency signals. For example, one or more operations of a baseband processor may be modified to account for the increased internal interference. Additionally, or alternatively, reporting of channel state information may be modified to account for increased internal interference of the UE. Additional details are described herein.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 30, 2020
    Inventors: Steven Charles CICCARELLI, Vikas MAHAJAN, Tae Min KIM, Supratik BHATTACHARJEE, Chitaranjan PELUR SUKUMAR, Ashok MANTRAVADI, Pooyan AMINI, Alberto RICO ALVARINO, Carl HARDIN
  • Publication number: 20200021327
    Abstract: An method for wireless communication increases efficiency of its power amplifier (PA) by reducing an insertion loss of a filter (e.g., a transmit (Tx) filter). The method includes detecting, at a user equipment, a dominant spatial direction of interference. The method further includes determining whether to bypass a transmit filter based on an energy level associated with the dominant spatial direction of the interference.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 16, 2020
    Inventors: Steven Charles CICCARELLI, Roberto RIMINI, Carl HARDIN
  • Patent number: 10209364
    Abstract: An anti-theft system that is capable of being tracked by and automatically notifies the appropriate authorities when leaving a designated geo-fence area. The anti-theft system includes a storage device having two opaque housing portions that can be secured together along their respective peripheries, providing a cavity. The housing portions are opaque except for a cutout in one of the housing portions. The cavity provides a GPS and a mounting display, wherein the mounting display secure a valuable so that it is partially visible through the cutout, while the GPS is not so visible. The GPS tracks and notifies according to predetermined criteria.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 19, 2019
    Inventor: Timothy Carl Hardin