Patents by Inventor Carl J. Draginoff, Jr.

Carl J. Draginoff, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240268853
    Abstract: Various embodiments are directed to articulatable surgical instruments. Some embodiments comprise an end effector to treat tissue, where the end effector comprises an ultrasonic blade. A hollow shaft may extend proximally from the end effector along a longitudinal axis. A waveguide may extend through the shaft and may be acoustically coupled to the ultrasonic blade. The waveguide may comprise a distally positioned flange positioned within the hollow shaft proximally from the blade and may be held stationary at a first pivot point positioned within the hollow shaft proximally from the flange. A reciprocating wedge may be positioned within the hollow shaft such that distal motion of the wedge pushes the wedge between the flange and the hollow shaft, causing the ultrasonic blade to pivot about the first pivot point in a first direction.
    Type: Application
    Filed: January 12, 2024
    Publication date: August 15, 2024
    Inventors: Foster B. Stulen, Zhifan F. Huang, Patrick A. Weizman, Steven P. Smolik, Carl J. Draginoff, JR.
  • Patent number: 11986200
    Abstract: Various exemplary methods and devices for actuating surgical instruments are provided. In general, a surgical device can include one or more actuation shafts configured to facilitate actuation of the device. In an exemplary embodiment, the device can include four actuation shafts, two actuation shafts to facilitate articulation of the device, one actuation shaft to facilitate opening and closing of jaws at a distal end of the device, and one actuation shaft to facilitate moving a cutting element of the device. In an exemplary embodiment, each of the one or more actuation shafts can include a distal elongate member and a proximal elongate member having a proximal end attached to a distal end of the distal elongate member. The proximal elongate member can be rigid, and the distal elongate member can be flexible.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: May 21, 2024
    Assignee: Cilag GmbH International
    Inventors: Chad P. Boudreaux, Jason R. Lesko, Eric N. Johnson, Kevin M. Fiebig, Carl J. Draginoff, Jr., Scott B. Killinger, Kris E. Kallenberger, Barry C. Worrell
  • Publication number: 20240065721
    Abstract: Various example embodiments described herein are directed to articulating surgical instruments for treating tissue comprising an end effector and a shaft extending proximally from the end effector along a longitudinal axis. In certain embodiments, the shaft comprises a plurality of transverse spacer members as well as first and second rotatable members extending through at least a portion of the plurality of transverse spacer members. The first and second rotatable members may both be biased away from the longitudinal axis such that their respective directions of bias vary with rotation of the first rotatable member. When the respective directions of bias of the first and second rotatable members oppose one another, the shaft may be substantially straight. When the respective directions of bias of the first and second rotatable members are aligned with one another, the shaft may articulate away from the longitudinal axis in the direction of the alignment.
    Type: Application
    Filed: June 13, 2023
    Publication date: February 29, 2024
    Inventors: Michael P. Weir, Joseph B. Kraimer, Frederick E. Shelton, IV, Stephen J. Balek, Zhifan F. Huang, Sora Rhee, Foster B. Stulen, Carl J. Draginoff, JR.
  • Patent number: 11903605
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 20, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11871955
    Abstract: Various embodiments are directed to articulatable surgical instruments and surgical systems comprising articulatable surgical instruments. Some embodiments comprise an end effector to comprising an ultrasonic blade. A hollow shaft may extend proximally from the end effector along a longitudinal axis. The hollow shaft may comprise a rigid portion and a flexible portion at a first position on the longitudinal axis distal from the rigid portion. A waveguide may extend through the shaft and may be acoustically coupled to the ultrasonic blade. The waveguide may comprise a flexible portion at the first position on the longitudinal axis such that the end effector is pivotable away from the longitudinal axis from the first position.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: January 16, 2024
    Assignee: Cilag GmbH International
    Inventors: Foster B. Stulen, Zhifan F. Huang, Patrick A. Weizman, Steven P. Smolik, Carl J. Draginoff, Jr.
  • Patent number: 11717311
    Abstract: Various example embodiments described herein are directed to articulating surgical instruments for treating tissue comprising an end effector and a shaft extending proximally from the end effector along a longitudinal axis. In certain embodiments, the shaft comprises a plurality of transverse spacer members as well as first and second rotatable members extending through at least a portion of the plurality of transverse spacer members. The first and second rotatable members may both be biased away from the longitudinal axis such that their respective directions of bias vary with rotation of the first rotatable member. When the respective directions of bias of the first and second rotatable members oppose one another, the shaft may be substantially straight. When the respective directions of bias of the first and second rotatable members are aligned with one another, the shaft may articulate away from the longitudinal axis in the direction of the alignment.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: August 8, 2023
    Assignee: Cilag GmbH International
    Inventors: Michael P. Weir, Joseph B. Kraimer, Frederick E. Shelton, IV, Stephen J. Balek, Zhifan F. Huang, Sora Rhee, Foster B. Stulen, Carl J. Draginoff, Jr.
  • Publication number: 20230100459
    Abstract: A surgical instrument includes a body, a shaft assembly extending distally from and rotatably coupled to the body, an end effector extending distally from the shaft assembly, a fiber optic cable, and a rotary coupling assembly. The end effector may rotate with the shaft assembly relative to the body. The end effector includes a sensor assembly. The fiber optic cable extends proximally from the sensor assembly, along the shaft assembly, and into the body. The fiber optic cable includes a distal portion that rotates with the end effector, a proximal portion associated with the body, and a coiled portion interposed between the distal portion and the proximal portion. The rotary coupling assembly includes a handle-side body and a shaft-side body. The rotary coupling assembly can radially expand and contract the coiled portion of the fiber optic cable in response to relative rotation between the handle-side body and the shaft-side body.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Inventors: Carl J. Draginoff, Jr., Chad P. Boudreaux, Thomas J. Watson, Robertus C. Meijer
  • Patent number: 11589892
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: February 28, 2023
    Assignee: Cilag GmbH International
    Inventors: Michael J. Stokes, Scott R. Bingham, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Frederick L. Estera, Benjamin D. Dickerson, Carl J. Draginoff, Jr., Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Karalyn R. Tellio, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas S. Glutz, Amir Feriani, Emmanuel Gremion
  • Publication number: 20210259725
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, JR., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11076881
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 3, 2021
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Waters, Fajian Zhang
  • Patent number: 10987123
    Abstract: Various example embodiments described herein are directed to articulating surgical instruments for treating tissue comprising an end effector and a shaft extending proximally from the end effector along a longitudinal axis. In certain embodiments, the shaft comprises a plurality of transverse spacer members as well as first and second rotatable members extending through at least a portion of the plurality of transverse spacer members. The first and second rotatable members may both be biased away from the longitudinal axis such that their respective directions of bias vary with rotation of the first rotatable member. When the respective directions of bias of the first and second rotatable members oppose one another, the shaft may be substantially straight. When the respective directions of bias of the first and second rotatable members are aligned with one another, the shaft may articulate away from the longitudinal axis in the direction of the alignment.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: April 27, 2021
    Assignee: Ethicon LLC
    Inventors: Michael P. Weir, Joseph B. Kraimer, Frederick E. Shelton, IV, Stephen J. Balek, Zhifan F. Huang, Sora Rhee, Carl J. Draginoff, Jr.
  • Publication number: 20210100578
    Abstract: Various example embodiments described herein are directed to articulating surgical instruments for treating tissue comprising an end effector and a shaft extending proximally from the end effector along a longitudinal axis. In certain embodiments, the shaft comprises a plurality of transverse spacer members as well as first and second rotatable members extending through at least a portion of the plurality of transverse spacer members. The first and second rotatable members may both be biased away from the longitudinal axis such that their respective directions of bias vary with rotation of the first rotatable member. When the respective directions of bias of the first and second rotatable members oppose one another, the shaft may be substantially straight. When the respective directions of bias of the first and second rotatable members are aligned with one another, the shaft may articulate away from the longitudinal axis in the direction of the alignment.
    Type: Application
    Filed: September 16, 2020
    Publication date: April 8, 2021
    Inventors: Michael P. Weir, Joseph B. Kraimer, Frederick E. Shelton, IV, Stephen J. Balek, Zhifan F. Huang, Sora Rhee, Foster B. Stulen, Carl J. Draginoff, JR.
  • Publication number: 20210015515
    Abstract: Various exemplary methods and devices for actuating surgical instruments are provided. In general, a surgical device can include one or more actuation shafts configured to facilitate actuation of the device. In an exemplary embodiment, the device can include four actuation shafts, two actuation shafts to facilitate articulation of the device, one actuation shaft to facilitate opening and closing of jaws at a distal end of the device, and one actuation shaft to facilitate moving a cutting element of the device. In an exemplary embodiment, each of the one or more actuation shafts can include a distal elongate member and a proximal elongate member having a proximal end attached to a distal end of the distal elongate member. The proximal elongate member can be rigid, and the distal elongate member can be flexible.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 21, 2021
    Inventors: Chad P. Boudreaux, Jason R. Lesko, Eric N. Johnson, Kevin M. Fiebig, Carl J. Draginoff, JR., Scott B. Killinger, Kris E. Kallenberger, Barry C. Worrell
  • Patent number: 10856897
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 8, 2020
    Assignee: Ethicon LLC
    Inventors: Michael J. Stokes, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Frederick L. Estera, Benjamin D. Dickerson, Carl J. Draginoff, Jr., Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas Glutz, Amir Feriani, Emmanuel Gremion
  • Patent number: 10828059
    Abstract: A handle assembly for a handheld surgical instrument is disclosed. The handle assembly may include a body portion extending parallel to a longitudinal axis, a fixed handle interfaced with the body portion and extending downwardly from the body portion and away from the longitudinal axis, and a detachable handle portion. The fixed handle may define a proximal contact surface. The detachable handle portion may define an internal surface configured to interface with the proximal contact surface of the fixed handle and comprise at least one attachment feature to removably couple the detachable handle portion to the fixed handle.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 10, 2020
    Assignee: Ethicon LLC
    Inventors: Daniel W. Price, Galen C. Robertson, Cory G. Kimball, Scott A. Woodruff, Matthew C. Miller, Kip M. Rupp, Carrie I. Hensley, Jane A. Sheetz, Carl J. Draginoff, Jr.
  • Patent number: 10806478
    Abstract: Various exemplary methods and devices for actuating surgical instruments are provided. In general, a surgical device can include one or more actuation shafts configured to facilitate actuation of the device. In an exemplary embodiment, the device can include four actuation shafts, two actuation shafts to facilitate articulation of the device, one actuation shaft to facilitate opening and closing of jaws at a distal end of the device, and one actuation shaft to facilitate moving a cutting element of the device. In an exemplary embodiment, each of the one or more actuation shafts can include a distal elongate member and a proximal elongate member having a proximal end attached to a distal end of the distal elongate member. The proximal elongate member can be rigid, and the distal elongate member can be flexible.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: October 20, 2020
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Jason R. Lesko, Eric N. Johnson, Kevin M. Fiebig, Carl J. Draginoff, Jr., Scott B. Killinger, Kris E. Kallenberger, Barry C. Worrell
  • Patent number: 10743898
    Abstract: Surgical devices are provided having power-assisted or fully powered jaw closure. The devices herein generally include a handle portion, an elongate shaft, and an effector having first and second jaws configured to engage tissue. A motor and one or more compression springs can be operatively coupled, and activation of the motor can compress the spring(s) to reduce the amount of user supplied force to compress tissue between the jaws. In some embodiments, the devices can be configured to regulate an amount of compression applied by the jaws prior to, during, and/or after cutting of the tissue to promote hemostasis. For example, the devices can include sensors, processors, and/or other components that analyze data indicative of tissue type and tissue load. Based on this feedback, the device can automatically adjust the amount of compression or energy applied to the tissue to seal the tissue.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: August 18, 2020
    Assignee: Ethicon LLC
    Inventors: John A. Hibner, Catherine A. Corbett, Scott R. Bingham, Chad P. Boudreaux, Carl J. Draginoff, Jr., Geoffrey S. Strobl, Eric N. Johnson
  • Publication number: 20190314054
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 17, 2019
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, JR., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Waters, Fajian Zhang
  • Publication number: 20190201048
    Abstract: Various embodiments are directed to articulatable surgical instruments. Some embodiments comprise an end effector to treat tissue, where the end effector comprises an ultrasonic blade. A hollow shaft may extend proximally from the end effector along a longitudinal axis. A waveguide may extend through the shaft and may be acoustically coupled to the ultrasonic blade. The waveguide may comprise a distally positioned flange positioned within the hollow shaft proximally from the blade and may be held stationary at a first pivot point positioned within the hollow shaft proximally from the flange. A reciprocating wedge may be positioned within the hollow shaft such that distal motion of the wedge pushes the wedge between the flange and the hollow shaft, causing the ultrasonic blade to pivot about the first pivot point in a first direction.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 4, 2019
    Inventors: Foster B. Stulen, Zhifan F. Huang, Patrick A. Weizman, Steven P. Smolik, Carl J. Draginoff, JR.
  • Patent number: 10335182
    Abstract: Various embodiments are directed to articulatable surgical instruments and surgical systems comprising articulatable surgical instruments. Some embodiments comprise an end effector to treat tissue, where the end effector comprises an ultrasonic blade. A hollow shaft may extend proximally from the end effector along a longitudinal axis. A waveguide may extend through the hollow shaft and may be acoustically coupled to the ultrasonic blade. The waveguide may comprise a distally positioned flange positioned within the hollow shaft proximally from the ultrasonic blade and may be held stationary at a first pivot point positioned within the hollow shaft proximally from the flange. A reciprocatable wedge may be configured to interact with the flange to cause the ultrasonic blade to pivot about the first pivot point in a first direction.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: July 2, 2019
    Assignee: Ethicon LLC
    Inventors: Foster B. Stulen, Zhifan F. Huang, Patrick A. Weizman, Steven P. Smolik, Carl J. Draginoff, Jr.