Patents by Inventor Carl Koval

Carl Koval has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150258273
    Abstract: Electrochemical actuation is disclosed for fluid movement and flow control in microfluidic devices, allowing for miniaturization, minimal power requirements, single-use disposability and engineering of small, complex fluidic networks. In one embodiment, a single-dose fluid delivery device is operable to deliver a bolus dose, in a single extended stroke or in multiple repeated doses. The device uses three electrochemically-actuated chambers, two of the chambers operating as inlet/outlet valves for the device and a third providing both a temporary containment and pumping action. By sequential manipulation of the fluid pressure in the three chambers, fluids may be delivered in precise quantities by the device.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 17, 2015
    Inventors: Forrest W. Payne, Sai Ramamurthy Kumar, Christine E. Evans, Anna Washburn, Andy M. Dunn, Brian Young, Joe Bruton, Champak Das, Kavita M. Jeerage, Carl A. Koval, Richard D. Noble
  • Patent number: 8343324
    Abstract: The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current is passed through a divided electrochemical cell. Adjacent compartments of the cell are divided by a separator which comprises an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: January 1, 2013
    Assignee: The Regents of the University of Colorado
    Inventors: Carl A. Koval, Christine E. Evans, Richard D. Noble, Mya A. Norman
  • Patent number: 8187441
    Abstract: The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current passes through a divided electrochemical cell. Adjacent compartments of the cell are divided by an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: May 29, 2012
    Inventors: Christine E. Evans, Forrest W. Payne, Carl A. Koval, Richard D. Noble, Mya A. Norman
  • Publication number: 20100219067
    Abstract: The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current is passed through a divided electrochemical cell. Adjacent compartments of the cell are divided by a separator which comprises an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 2, 2010
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Carl A. Koval, Christine E. Evans, Richard D. Noble, Mya A. Norman
  • Patent number: 7718047
    Abstract: The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current is passed through a divided electrochemical cell. Adjacent compartments of the cell are divided by a separator which comprises an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: May 18, 2010
    Assignee: The Regents of the University of Colorado
    Inventors: Carl A. Koval, Christine E. Evans, Richard D. Noble, Mya A. Norman
  • Publication number: 20090308752
    Abstract: The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current passes through a divided electrochemical cell. Adjacent compartments of the cell are divided by an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 17, 2009
    Inventors: Christine E. Evans, Forrest W. Payne, Carl A. Koval, Richard D. Noble, Mya A. Norman
  • Publication number: 20060207883
    Abstract: The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current is passed through a divided electrochemical cell. Adjacent compartments of the cell are divided by a separator which comprises an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
    Type: Application
    Filed: October 18, 2005
    Publication date: September 21, 2006
    Inventors: Carl Koval, Christine Evans, Richard Noble, Mya Norman
  • Patent number: 5498823
    Abstract: This invention relates to a method for effectively separating an unsaturated hydrocarbon from a feedstock containing at least two similar unsaturated hydrocarbons comprising passing the feedstock over one side of an ionopore membrane charged with a facilitator having an affinity for each of the at least two similar unsaturated hydrocarbons and recovering from a second side of the membrane permeate containing predominantly one of the at least two similar unsaturated hydrocarbons, the similar unsaturated hydrocarbons being selected from the group consisting essentially of aromatic, alkene, and diene hydrocarbons.This invention further relates to a method for achieving liquid phase separation of at least two competing components from a feedstock containing the components such that the separation factor for the competing components is at least about 4 times the separation factor calculated when permeating single components using the same membrane and under the same conditions.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: March 12, 1996
    Assignee: Regents of the University of Colorado
    Inventors: Richard D. Noble, Paul M. Thoen, Carl A. Koval
  • Patent number: 5439652
    Abstract: An improved photocatalytic method for removing organic contaminants from fluid or gas phases and a photoreactor design which allows exposure of photoreactive material to controlled periodic illumination. An improved method for improving the photoefficiency of a photocatalytic process comprising continuous illumination of the photocatalyst at a decreased light intensity.
    Type: Grant
    Filed: September 30, 1993
    Date of Patent: August 8, 1995
    Assignee: The Regents of the University of Colorado
    Inventors: Jeffrey G. Sczechowski, Carl A. Koval, Richard D. Noble
  • Patent number: 5430225
    Abstract: Derivatized molybdenum-sulfide dimers of the general formula [(C.sub.5 R.sub.5 Mo).sub.2 (.mu.-S).sub.4-x (.mu.-SR).sub.x ].sup.n are utilized in the solid state, incorporated in permselective membranes and in aqueous solution as chemical specific complexing agents in various separation processes.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: July 4, 1995
    Assignee: The University of Colorado Foundation, Inc.
    Inventors: Mary R. DuBois, Richard D. Noble, Carl A. Koval
  • Patent number: 5417832
    Abstract: The present invention describes a perfluorinated ionomer membrane having a improved transport characteristics. A surfactant species is added to a polymer mixture prior to film casting. The resulting membranes have a measurably altered membrane microstructure and improved transport characteristics over prior art membranes. The present invention describes the method of producing the improved membranes. The membranes of the present invention are useful in a number of separation processes, including the separation of NH.sub.3 from gaseous and liquid mixtures, in the production of NaOH and Cl.sub.2 gas from the electrolytic dissolution of NaCl, in the separation of toxic and radioactive metals from aqueous streams, and in solid polymer electrolyte H.sub.2 /O.sub.2 fuel cells.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: May 23, 1995
    Assignee: The University of Colorado Foundation, Inc.
    Inventors: John Pellegrino, Richard D. Noble, Robert Rabago, Carl Koval
  • Patent number: 5414194
    Abstract: Derivatized molybdenum-sulfide dimers of the general formula [(C.sub.5 R.sub.5 Mo).sub.2 (.mu.-S).sub.4-x (.mu.-SR).sub.x ].sup.n are utilized in the solid state, incorporated in permselective membranes and in aqueous solution as chemical specific complexing agents in various separation processes.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: May 9, 1995
    Assignee: The Regents of the University of Colorado
    Inventors: Mary R. Dubois, Richard D. Noble, Carl A. Koval
  • Patent number: 5391791
    Abstract: Derivatized molybdenum-sulfide dimers of the general formula [(C.sub.5 R.sub.5 Mo).sub.2 (.mu.-S).sub.4-x (.mu.-SR).sub.x ].sup.n are utilized in the solid state, incorporated in permselective membranes and in aqueous solution as chemical specific complexing agents in various separation processes.
    Type: Grant
    Filed: August 27, 1991
    Date of Patent: February 21, 1995
    Assignee: The University of Colorado Foundation, Inc.
    Inventors: Mary R. Dubois, Richard D. Noble, Carl A. Koval
  • Patent number: 5332508
    Abstract: A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: July 26, 1994
    Assignee: Regents of the University of Colorado
    Inventors: Nancy S. Foster, Carl A. Koval, Richard D. Noble
  • Patent number: 5130027
    Abstract: Magnetically stabilized fluidized bed technology is utilized in conjunction with ion-exchange adsorption/desorption processes in a method and system for isolating proteins from cell lysate. The invention also includes a magnetizable, porous, ion-exchange particle, and a method for producing the same, for use with the stationary magnetically stabilized fluidized bed protein isolation process.
    Type: Grant
    Filed: March 26, 1991
    Date of Patent: July 14, 1992
    Assignee: The University of Colorado Foundation, Inc.
    Inventors: Richard D. Noble, Carl A. Koval, Lori Nixon, Geoffrey F. Slaff
  • Patent number: 5110624
    Abstract: Magnetizable, porous particles are prepared by contacting a first portion of porous particles with a suspension comprised of magnetite particles, coated with a dispersing agent, and water, removing and discarding the first portion of porous particles, contacting the suspension with a second portion of porous particles, and separating the second portion of porous particles from the suspension. The magnetizable, second portion of porous particles may be ion exchange resin particles used in a magnetically stabilized fluidized bed to isolate proteins from cell lysate.
    Type: Grant
    Filed: March 26, 1991
    Date of Patent: May 5, 1992
    Assignee: The University of Colorado Foundation, Inc.
    Inventors: Richard D. Noble, Carl A. Koval, Lori Nixon, Geoffrey F. Slaff
  • Patent number: 5084169
    Abstract: Magnetically stabilized fluidized bed technology is utilized in conjunction with ion-exchange adsorption/desorption processes in a method and system for isolating proteins from cell lysate. The invention also includes a magnetizable, porous, ion-exchange particle, and a method for producing the same, for use with the stationary magnetically stabilized fluidized bed protein isolation process.
    Type: Grant
    Filed: September 19, 1989
    Date of Patent: January 28, 1992
    Assignee: The University of Colorado Foundation, Inc.
    Inventors: Richard D. Noble, Carl A. Koval, Lori Nixon, Geoffrey F. Slaff