Patents by Inventor Carl Lance Boling

Carl Lance Boling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11185704
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: November 30, 2021
    Assignee: PACESETTER, INC.
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Publication number: 20210361940
    Abstract: Systems, devices, and methods discussed herein include wireless midfield transmitters and implantable receiver devices. A midfield transmitter can be configured to provide signals outside of tissue that give rise to propagating signals inside of tissue. The present subject matter includes a protection circuit for a transmitter device, a layered transmitter device, an implantable receiver device, implantation and extraction methods, test and assembly methods, and the like. In an example, a protection circuit includes a first control circuit to receive an RF drive signal and conditionally provide an output signal to an antenna. A second control circuit can generate a control signal based on the antenna output signal and/or information about the RF drive signal. A gain circuit can provide the RF drive signal to the first control circuit. The gain circuit can change an amplitude of the RF drive signal based on the control signal from the second control circuit.
    Type: Application
    Filed: April 12, 2019
    Publication date: November 25, 2021
    Inventors: Alexander Yeh, Hui Zhang, Thomas Burpee Ellsworth, III, Elia Junco, Stephen James Schellenberg, Carl Lance Boling
  • Publication number: 20210353257
    Abstract: A device for generating microbubbles may include a syringe having a barrel, a plunger and a syringe tip; a converging nozzle; and an aerator. The converging nozzle may have a coupling end, a converging tip opposite the coupling end, an exterior mating surface adjacent the converging tip, and an interior channel that fluidly couples the syringe tip and converging tip. The interior channel may have a diameter that progressively decreases from the coupling end to the converging tip. The converging nozzle may be coupled to the syringe tip. The aerator may have a retention end, a discharge end, an interior air chamber, an interior circumferential lip, and a discharge channel at the discharge end. The retention end may be coupled to the converging nozzle. The interior circumferential lip may abut the exterior mating surface. One or more air channels may fluidly couple the discharge channel and the interior air chamber.
    Type: Application
    Filed: January 26, 2021
    Publication date: November 18, 2021
    Applicant: Agitated Solutions Inc.
    Inventors: Benjamin Arcand, Carl Lance Boling
  • Publication number: 20210113718
    Abstract: A method for generating microbubbles may include providing a syringe having a barrel defining an interior volume, a plunger, a tip and a check valve assembly. The check valve assembly may have an inlet port; a check valve that is configured to open when the plunger is drawn back by a user; and a nozzle in fluid communication with the interior volume and, when the check valve is open, in fluid communication with the inlet port. The method may include drawing liquid into the interior volume; removing a seal from the inlet port and drawing gas adjacent the inlet ports into the interior volume to form microbubbles in the liquid already drawn in; coupling the tip to an intravenous line associated with a patient undergoing a bubble study; and depressing the plunger to force the liquid and the formed microbubbles into the intravenous line.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 22, 2021
    Applicant: Agitated Solutions Inc.
    Inventors: Benjamin Arcand, Carl Lance Boling, Morgan Clyburn, Micah J. Eimer, Jennifer Chmura
  • Publication number: 20200129763
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including an electrical feedthrough assembly mounted on a housing, is described. An electronics compartment of the housing can contain an electronics assembly to generate a pacing impulse, and the electrical feedthrough assembly can include an electrode tip to deliver the pacing impulse to a target tissue. A monolithically formed electrode body can have a pin integrated with a cup. The pin can be electrically connected to the electronics assembly, and the cup can be electrically connected to the electrode tip. Accordingly, the biostimulator can transmit the pacing impulse through the monolithic pin and cup to the target tissue. The cup can hold a filler having a therapeutic agent for delivery to the target tissue and may include retention elements for maintaining the filler at a predetermined location within the cup.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 30, 2020
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 10441783
    Abstract: A medical tool includes a rotation mechanism that further includes a warning feature. The warning feature provides an indication when the rotation mechanism has achieved a number of rotations.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: October 15, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Peter Nee, Bradley Knippel, Daniel Coyle, Jennifer Heisel, Bernhard Arnar, Brett Hillukka, Tracee Eidenschink, Thomas B. Eby, Paul Paspa, Joseph Ramon Callol, Thomas Robert Luhrs, Carl Lance Boling
  • Publication number: 20190134413
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 9, 2019
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Patent number: 10105536
    Abstract: A leadless pulse generator is disclosed herein. The leadless pulse generator has a body, a helical anchor, an electrode, and a sleeve. The body includes a distal end and a proximal end opposite the distal end. The helical anchor distally extends from the distal end. The electrode is at the distal end. The sleeve distally extends from the distal end and has a proximal face and a distal face opposite the proximal face. The proximal face is adjacent the body. The sleeve coaxially extends about the helical anchor and further has a biased state wherein the distal face is near a distal tip of the helical anchor. The sleeve is configured to compress such that the distal face displaces proximally towards the proximal face upon the distal face being forced against the cardiac tissue in the course of the helical anchor screwing into the cardiac tissue.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: October 23, 2018
    Assignee: PACESETTER, INC.
    Inventors: Sondra Orts, Carl Lance Boling, Matthew G. Fishler, Benjamin F. James, IV, Xiangqun Chen
  • Patent number: 10098662
    Abstract: A surgical tool configured to facilitate delivery of a neurostimulator to a craniofacial region of a subject includes a handle portion, an elongate shaft having a contoured distal portion, and an insertion groove on the elongate shaft. The elongate shaft is configured to be advanced under a zygomatic bone along a maxillary tuberosity towards a pterygopalatine fossa. The distal portion includes a distal dissecting tip. The insertion groove is configured to receive, support, and guide a medical device or instrument.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 16, 2018
    Assignees: The Cleveland Clinic Foundation, Autonomic Technologies, Inc.
    Inventors: Carl Lance Boling, Anthony V. Caparso, Francis A. Papay, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Publication number: 20180133465
    Abstract: A leadless pulse generator is disclosed herein. The leadless pulse generator has a body, a helical anchor, an electrode, and a sleeve. The body includes a distal end and a proximal end opposite the distal end. The helical anchor distally extends from the distal end. The electrode is at the distal end. The sleeve distally extends from the distal end and has a proximal face and a distal face opposite the proximal face. The proximal face is adjacent the body. The sleeve coaxially extends about the helical anchor and further has a biased state wherein the distal face is near a distal tip of the helical anchor. The sleeve is configured to compress such that the distal face displaces proximally towards the proximal face upon the distal face being forced against the cardiac tissue in the course of the helical anchor screwing into the cardiac tissue.
    Type: Application
    Filed: January 16, 2018
    Publication date: May 17, 2018
    Inventors: Sondra Orts, Carl Lance Boling, Matthew G. Fishler, Benjamin F. James, IV, Xiangqun Chen
  • Patent number: 9907953
    Abstract: A leadless pulse generator is disclosed herein. The leadless pulse generator has a body, a helical anchor, an electrode, and a sleeve. The body includes a distal end and a proximal end opposite the distal end. The helical anchor distally extends from the distal end. The electrode is at the distal end. The sleeve distally extends from the distal end and has a proximal face and a distal face opposite the proximal face. The proximal face is adjacent the body. The sleeve coaxially extends about the helical anchor and further has a biased state wherein the distal face is near a distal tip of the helical anchor. The sleeve is configured to compress such that the distal face displaces proximally towards the proximal face upon the distal face being forced against the cardiac tissue in the course of the helical anchor screwing into the cardiac tissue.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: March 6, 2018
    Assignee: PACESETTER, INC.
    Inventors: Sondra Orts, Carl Lance Boling, Matthew G. Fishler, Benjamin F. James, IV, Xiangqun Chen
  • Publication number: 20180050192
    Abstract: A medical tool includes a rotation mechanism that further includes a warning feature. The warning feature provides an indication when the rotation mechanism has achieved a number of rotations.
    Type: Application
    Filed: August 18, 2017
    Publication date: February 22, 2018
    Inventors: Peter Nee, Bradley Knippel, Daniel Coyle, Jennifer Heisel, Bernhard Arnar, Brett Hillukka, Tracee Eidenschink, Thomas B. Eby, Paul Paspa, Joseph Ramon Callol, Thomas Robert Luhrs, Carl Lance Boling
  • Patent number: 9757572
    Abstract: Various methods for laser welding biocompatible material for use in implantable medical devices are disclosed. A method for laser processing includes applying a laser beam to a biocompatible material comprising at least 85% by weight zirconium oxide (ZrO2) or “zirconia” in an oxygen-free environment and depleting the material of oxygen. The depletion of oxygen converts the zirconium oxide to elemental zirconium at an interface where the material is applied to the elemental zirconium. In one embodiment, the present invention provides for an implantable medical device or component thereof made of a biocompatible material comprising zirconium oxide. The device includes a substrate that has an intrinsic conductive pathway comprising elemental zirconium that extends from a first surface to a second surface of the substrate.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: September 12, 2017
    Assignee: Autonomic Technologies, Inc.
    Inventors: Carl Lance Boling, Benjamin David Pless
  • Publication number: 20170143959
    Abstract: An implantable medical device is provided for the suppression or prevention of pain, movement disorders, epilepsy, cerebrovascular diseases, autoimmune diseases, sleep disorders, autonomic disorders, abnormal metabolic states, disorders of the muscular system, and neuropsychiatric disorders in a patient. The implantable medical device can be a neurostimulator configured to be implanted on or near a cranial nerve to treat headache or other neurological disorders. One aspect of the implantable medical device is that it includes an electronics enclosure, a substrate integral to the electronics enclosure, and a monolithic feed-through integral to the electronics enclosure and the substrate. In some embodiments, the implantable medical device can include a fixation apparatus for attaching the device to a patient.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Carl Lance Boling, Benjamin David Pless, Ryan Powell, Anthony V. Caparso
  • Publication number: 20170106185
    Abstract: A leadless pulse generator is disclosed herein. The leadless pulse generator has a body, a helical anchor, an electrode, and a sleeve. The body includes a distal end and a proximal end opposite the distal end. The helical anchor distally extends from the distal end. The electrode is at the distal end. The sleeve distally extends from the distal end and has a proximal face and a distal face opposite the proximal face. The proximal face is adjacent the body. The sleeve coaxially extends about the helical anchor and further has a biased state wherein the distal face is near a distal tip of the helical anchor. The sleeve is configured to compress such that the distal face displaces proximally towards the proximal face upon the distal face being forced against the cardiac tissue in the course of the helical anchor screwing into the cardiac tissue.
    Type: Application
    Filed: October 15, 2015
    Publication date: April 20, 2017
    Inventors: Sondra Orts, Carl Lance Boling, Matthew G. Fishler, Benjamin F. James, IV, Xiangqun Chen
  • Patent number: 9554694
    Abstract: Methods and apparatus for delivering a neurostimulator to a target tissue are provided which may include any number of features. One feature is a delivery tool comprising a handle portion, an elongate shaft comprising a contoured distal portion, a visualization system embedded in the elongate shaft, and an insertion groove on the elongate shaft configured to deploy the neurostimulator. The contoured distal portion can be shaped and configured to maintain contact with a posterior maxilla and elevate a periosteum off of the posterior maxilla to avoid soft tissue dissection. In some embodiments, the neurostimulator is implanted in close proximity to or touching the sphenopalatine ganglion.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 31, 2017
    Assignee: Autonomic Technologies, Inc.
    Inventors: Benjamin David Pless, Carl Lance Boling, Anthony V. Caparso
  • Patent number: 9550057
    Abstract: A surgical guide to facilitate delivery of a therapy delivery device into the pterygopalatine fossa of a subject includes a curvilinear body having a distal end portion, a proximal end portion, and an intermediate portion extending between the distal and proximal end portions. The proximal end portion is defined by oppositely disposed first and second surfaces. The proximal end portion and the intermediate portion define a longitudinal plane that extends between the proximal and distal end portions. The distal end portion has an arcuate configuration relative to the longitudinal plane and is defined by oppositely disposed third and fourth surfaces.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: January 24, 2017
    Assignee: The Cleveland Clinic Foundation
    Inventors: Francis A. Papay, Carl Lance Boling
  • Publication number: 20170007283
    Abstract: One aspect of the present disclosure includes a neurostimulator delivery apparatus. The apparatus includes a handle portion, an elongate shaft extending from the handle portion, and a distal deployment portion. The distal deployment portion is configured to releasably mate with a neurostimulator. The neurostimulator is sized and configured for implantation into a craniofacial region of a subject.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 12, 2017
    Inventors: Carl Lance Boling, Anthony V. Caparso, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Patent number: 9456836
    Abstract: One aspect of the present disclosure includes a neurostimulator delivery apparatus. The apparatus includes a handle portion, an elongate shaft extending from the handle portion, and a distal deployment portion. The distal deployment portion is configured to releasably mate with a neurostimulator. The neurostimulator is sized and configured for implantation into a craniofacial region of a subject.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 4, 2016
    Assignee: AUTONOMIC TECHNOLOGIES, INC.
    Inventors: Carl Lance Boling, Anthony V. Caparso, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Publication number: 20160081716
    Abstract: A surgical tool configured to facilitate delivery of a neurostimulator to a craniofacial region of a subject includes a handle portion, an elongate shaft having a contoured distal portion, and an insertion groove on the elongate shaft. The elongate shaft is configured to be advanced under a zygomatic bone along a maxillary tuberosity towards a pterygopalatine fossa. The distal portion includes a distal dissecting tip. The insertion groove is configured to receive, support, and guide a medical device or instrument.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 24, 2016
    Inventors: Carl Lance Boling, Anthony V. Caparso, Francis A. Papay, Ryan Powell, Jennifer Teng, Morgan Clyburn