Patents by Inventor Carl O. Bozler

Carl O. Bozler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10498017
    Abstract: Miniature multifunctional antennas and related techniques are disclosed that are capable of wide bandwidth operation. In some embodiments, the antennas are capable of being reconfigured in the field for optimal performance in different frequency band configurations (e.g., a single wide instantaneous bandwidth, multiple smaller bands, etc.) and/or for purposes of self healing. In some embodiments, the antennas can be reconfigured in the field to achieve different polarizations (e.g., vertical, horizontal, circular). The antennas can be implemented in a very compact manner making them ideal for use in devices and platforms where size and weight are a concern.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: December 3, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Raoul Ouatagom Ouedraogo, Eric Phelps, Jeremy Muldavin, Todd Addison Thorsen, Carl O. Bozler, Christopher Cherry
  • Patent number: 10459293
    Abstract: Liquid crystal photonic devices and microcavities filled with liquid crystal materials are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. Previous research on photo-definable alignment layers has shown that they have limited stability, particularly against subsequent light exposure. A method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer is described, along with a method of utilizing a pre-polymer infused into the microcavity mixed with the liquid crystal to provide photostability. In this method, the polymer layer, formed under optical irradiation of liquid crystal cells, is effectively localized to a thin region near the substrate surface and thus provides a significant improvement in the photostability of the liquid crystal alignment.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: October 29, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Valerie A. Finnemeyer, Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Philip J. Bos, Douglas R. Bryant
  • Publication number: 20180364526
    Abstract: Liquid crystal photonic devices and microcavities filled with liquid crystal materials are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. Previous research on photo-definable alignment layers has shown that they have limited stability, particularly against subsequent light exposure. A method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer is described, along with a method of utilizing a pre-polymer infused into the microcavity mixed with the liquid crystal to provide photostability. In this method, the polymer layer, formed under optical irradiation of liquid crystal cells, is effectively localized to a thin region near the substrate surface and thus provides a significant improvement in the photostability of the liquid crystal alignment.
    Type: Application
    Filed: August 30, 2018
    Publication date: December 20, 2018
    Inventors: Valerie A. Finnemeyer, Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Philip J. Bos, Douglas R. Bryant
  • Patent number: 10153382
    Abstract: A mechanical memory transistor includes a substrate having formed thereon a source region and a drain region. An oxide is formed upon a portion of the source region and upon a portion of the drain region. A pull up electrode is positioned above the substrate such that a gap is formed between the pull up electrode and the substrate. A movable gate has a first position and a second position. The movable gate is located in the gap between the pull up electrode and the substrate. The movable gate is in contact with the pull up electrode when the movable gate is in a first position and is in contact with the oxide to form a gate region when the movable gate is in the second position. The movable gate, in conjunction with the source region and the drain region and when the movable gate is in the second position, form a transistor that can be utilized as a non-volatile memory element.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: December 11, 2018
    Assignee: Massachusetts Institute of Technology
    Inventor: Carl O. Bozler
  • Publication number: 20180095306
    Abstract: The high-pixel-count uncooled thermal imaging arrays disclosed herein have liquid crystal (LC) microcavity transducers separate from the read-out integrated circuit (ROIC). The transducer converts incident infrared (IR) radiation in birefringence changes that can be measured with visible light. In other words, the system uses the temperature sensitivity of the LC birefringence to convert the IR scene to a visible image. Measurements on sample arrays indicate that the LC material quality is similar to that of bulk samples and has good noise performance. Additionally, high-fill-factor arrays on fused-silica substrates may be processed to enable optimization of conditions for greatly improved temperature sensitivity. An additional IR absorber layer may be integrated into the process to tune the structure for the infrared.
    Type: Application
    Filed: November 14, 2017
    Publication date: April 5, 2018
    Inventors: Robert K. REICH, Harry R. CLARK, Carl O. BOZLER, Shaun R. BERRY, Jeremy B. MULDAVIN
  • Patent number: 9835885
    Abstract: The high-pixel-count uncooled thermal imaging arrays disclosed herein have liquid crystal (LC) microcavity transducers separate from the read-out integrated circuit (ROIC). The transducer converts incident infrared (IR) radiation in birefringence changes that can be measured with visible light. In other words, the system uses the temperature sensitivity of the LC birefringence to convert the IR scene to a visible image. Measurements on sample arrays indicate that the LC material quality is similar to that of bulk samples and has good noise performance. Additionally, high-fill-factor arrays on fused-silica substrates may be processed to enable optimization of conditions for greatly improved temperature sensitivity. An additional IR absorber layer may be integrated into the process to tune the structure for the infrared.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: December 5, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Jeremy B. Muldavin
  • Publication number: 20170194699
    Abstract: Miniature multifunctional antennas and related techniques are disclosed that are capable of wide bandwidth operation. In some embodiments, the antennas are capable of being reconfigured in the field for optimal performance in different frequency band configurations (e.g., a single wide instantaneous bandwidth, multiple smaller bands, etc.) and/or for purposes of self healing. In some embodiments, the antennas can be reconfigured in the field to achieve different polarizations (e.g., vertical, horizontal, circular). The antennas can be implemented in a very compact manner making them ideal for use in devices and platforms where size and weight are a concern.
    Type: Application
    Filed: September 15, 2015
    Publication date: July 6, 2017
    Inventors: Raoul Ouatagom Ouedraogo, Eric Phelps, Jeremy Muldavin, Todd Addison Thorsen, Carl O. Bozler, Christopher Cherry
  • Publication number: 20160109760
    Abstract: Liquid crystal photonic devices and microcavities filled with liquid crystal materials are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. Previous research on photo-definable alignment layers has shown that they have limited stability, particularly against subsequent light exposure. A method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer is described, along with a method of utilizing a pre-polymer infused into the microcavity mixed with the liquid crystal to provide photostability. In this method, the polymer layer, formed under optical irradiation of liquid crystal cells, is effectively localized to a thin region near the substrate surface and thus provides a significant improvement in the photostability of the liquid crystal alignment.
    Type: Application
    Filed: September 4, 2015
    Publication date: April 21, 2016
    Inventors: Valerie A. Finnemeyer, Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Philip J. Bos, Douglas R. Bryant
  • Publication number: 20160070125
    Abstract: The high-pixel-count uncooled thermal imaging arrays disclosed herein have liquid crystal (LC) microcavity transducers separate from the read-out integrated circuit (ROIC). The transducer converts incident infrared (IR) radiation in birefringence changes that can be measured with visible light. In other words, the system uses the temperature sensitivity of the LC birefringence to convert the IR scene to a visible image. Measurements on sample arrays indicate that the LC material quality is similar to that of bulk samples and has good noise performance. Additionally, high-fill-factor arrays on fused-silica substrates may be processed to enable optimization of conditions for greatly improved temperature sensitivity. An additional IR absorber layer may be integrated into the process to tune the structure for the infrared.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 10, 2016
    Inventors: Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Jeremy B. Muldavin
  • Patent number: 8704314
    Abstract: A mechanical memory transistor includes a substrate having formed thereon a source region and a drain region. An oxide is formed upon a portion of the source region and upon a portion of the drain region. A pull up electrode is positioned above the substrate such that a gap is formed between the pull up electrode and the substrate. A movable gate has a first position and a second position. The movable gate is located in the gap between the pull up electrode and the substrate. The movable gate is in contact with the pull up electrode when the movable gate is in a first position and is in contact with the oxide to form a gate region when the movable gate is in the second position. The movable gate, in conjunction with the source region and the drain region and when the movable gate is in the second position, form a transistor that can be utilized as a non-volatile memory element.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 22, 2014
    Assignee: Massachusetts Institute of Technology
    Inventor: Carl O. Bozler
  • Publication number: 20140077273
    Abstract: A mechanical memory transistor includes a substrate having formed thereon a source region and a drain region. An oxide is formed upon a portion of the source region and upon a portion of the drain region. A pull up electrode is positioned above the substrate such that a gap is formed between the pull up electrode and the substrate. A movable gate has a first position and a second position. The movable gate is located in the gap between the pull up electrode and the substrate. The movable gate is in contact with the pull up electrode when the movable gate is in a first position and is in contact with the oxide to form a gate region when the movable gate is in the second position. The movable gate, in conjunction with the source region and the drain region and when the movable gate is in the second position, form a transistor that can be utilized as a non-volatile memory element.
    Type: Application
    Filed: October 22, 2013
    Publication date: March 20, 2014
    Applicant: Massachusetts Institute of Technology
    Inventor: Carl O. Bozler
  • Patent number: 8587106
    Abstract: A device includes a device wafer having a circuit component formed thereon and having vias formed therein and a cap wafer bonded to the device wafer. The cap wafer has a cavity therein. The cavity has a post formed therein, and the post is positioned to mechanically support the vias formed in the device wafer. The cavity has a volume, the volume substantially enclosing the circuit component formed on the device wafer. The cavity has a width and height such that an impedance of a transmission line is dependent upon the width and height of the cavity, or the impedance of a transmission line is dependent upon the width of a center conductor within the cavity.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: November 19, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl O. Bozler, Jeremy Muldavin, Peter W. Wyatt, Craig L. Keast, Steven Rabe
  • Patent number: 8432239
    Abstract: A micro-electromechanical system switch includes a substrate and a plurality of actuating electrodes formed the substrate wherein each actuating electrode is activatable. A cantilever beam has a first end and a second end and a plurality of stops formed thereon. The plurality of stops engages the substrate between the plurality of actuating electrode. A contact area is formed in the substrate and located to engage the second end of the cantilever beam. A voltage source applies a voltage to each actuating electrode independently in a sequence from an actuating electrode located adjacent to the first end of the cantilever beam to an actuating electrode located adjacent to the second end of the cantilever beam so that the plurality of stops sequentially engage the substrate between the plurality of actuating electrodes.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 30, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl O. Bozler, Craig L. Keast, Jeremy Muldavin
  • Publication number: 20100019872
    Abstract: A device includes a device wafer having a circuit component formed thereon and having vias formed therein and a cap wafer bonded to the device wafer. The cap wafer has a cavity therein. The cavity has a post formed therein, and the post is positioned to mechanically support the vias formed in the device wafer. The cavity has a volume, the volume substantially enclosing the circuit component formed on the device wafer. The cavity has a width and height such that an impedance of a transmission line is dependent upon the width and height of the cavity, or the impedance of a transmission line is dependent upon the width of a center conductor within the cavity.
    Type: Application
    Filed: June 11, 2007
    Publication date: January 28, 2010
    Inventors: Carl O. Bozler, Jeremy Muldavin, Peter W. Wyatt, Craig L. Keast, Steven Rabe
  • Publication number: 20090146226
    Abstract: A mechanical memory transistor includes a substrate having formed thereon a source region and a drain region. An oxide is formed upon a portion of the source region and upon a portion of the drain region. A pull up electrode is positioned above the substrate such that a gap is formed between the pull up electrode and the substrate. A movable gate has a first position and a second position. The movable gate is located in the gap between the pull up electrode and the substrate. The movable gate is in contact with the pull up electrode when the movable gate is in a first position and is in contact with the oxide to form a gate region when the movable gate is in the second position. The movable gate, in conjunction with the source region and the drain region and when the movable gate is in the second position, form a transistor that can be utilized as a non-volatile memory element.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 11, 2009
    Inventor: Carl O. Bozler
  • Patent number: 7484857
    Abstract: A deformable reflector includes a plurality of MEMS devices, each having an electrode membrane having a reflective surface thereon, a flat surface, and a pulldown electrode formed in the flat substrate. The electrode membrane has substantially a same flatness of the flat substrate when the electrode membrane comes into contact with the flat substrate across a majority of its surface area in response to a voltage being applied to the pulldown electrode. The electrode membrane has a two-dimensional curvature when no voltage is applied to the pulldown electrode.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: February 3, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl O. Bozler, W. Gregory Lyons, Jeremy B. Muldavin
  • Publication number: 20080135386
    Abstract: A micro-electromechanical system switch includes a substrate and a plurality of actuating electrodes formed the substrate wherein each actuating electrode is activatable. A cantilever beam has a first end and a second end and a plurality of stops formed thereon. The plurality of stops engages the substrate between the plurality of actuating electrode. A contact area is formed in the substrate and located to engage the second end of the cantilever beam. A voltage source applies a voltage to each actuating electrode independently in a sequence from an actuating electrode located adjacent to the first end of the cantilever beam to an actuating electrode located adjacent to the second end of the cantilever beam so that the plurality of stops sequentially engage the substrate between the plurality of actuating electrodes.
    Type: Application
    Filed: November 20, 2007
    Publication date: June 12, 2008
    Inventors: Carl O. Bozler, Craig L. Keast, Jeremy Muldavin
  • Patent number: 7218191
    Abstract: A capacitive RF switch and DC RF switch include a fixed electrode having a thin layer of metal and at least one pull-down electrode. A moving plate has a plurality of corrugations and a selective finger design. The capacitive switch includes a selective finger that comes into contact with the fixed electrode so as to minimize the stiction between the moving plate and the fixed electrode when the switch is closed. The DC switch comprises a plurality of dimples that are formed on the selective portion of the moving plate and are positioned to come into contact with the fixed electrode when the switch is closed so as to increase the contact force and lower the resistance between the moving plate and fixed electrode.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: May 15, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl O. Bozler, Shaun R. Berry, Jeremy Muldavin, Craig L. Keast
  • Patent number: 7061447
    Abstract: A reconfigurable antenna is presented that uses MEMs shutters to reconfigure a Fresnel zone plate antenna. It can be used to either point a main beam in different directions or to point multiple beams in different directions.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: June 13, 2006
    Assignee: The United States of America as represented by the Secretary of the Air Force.
    Inventors: Carl O. Bozler, Mark A. Gouker, Sean M. Duffy
  • Patent number: 6907153
    Abstract: An optical switch device includes a rolling shutter or membrane attached at one of its edges to a substrate near an optical port in the substrate. The rolling shutter can assume one of two states. In a first closed state, the membrane is uncoiled onto the substrate over the port such that light directed at the port impinges on the shutter. In a second open state, the membrane is rolled up away from the port such that light directed at the port impinges on the port. In one embodiment, a mirror is formed on the membrane such that when the membrane is in the closed state over the substrate, light directed at the port is reflected by the mirror. In one configuration, the optical port includes a hole or aperture such light passed through the port without interference. The device can include a latch electrode the far end of the membrane such that when it is rolled out, it can be held in position by a latching voltage applied across the latch electrode and the substrate.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: June 14, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl O. Bozler, Steven Rabe