Patents by Inventor Carla A. Pagotto
Carla A. Pagotto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240424289Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: ApplicationFiled: September 5, 2024Publication date: December 26, 2024Inventors: David C. Hacker, Maria-Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Publication number: 20210007671Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: ApplicationFiled: August 18, 2020Publication date: January 14, 2021Applicant: MEDTRONIC XOMED, INC.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Patent number: 10842437Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: GrantFiled: February 25, 2019Date of Patent: November 24, 2020Assignee: MEDTRONIC XOMED, INC.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Patent number: 10743817Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: GrantFiled: August 31, 2017Date of Patent: August 18, 2020Assignee: Medtronic Xomed, Inc.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Publication number: 20190183424Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: ApplicationFiled: February 25, 2019Publication date: June 20, 2019Applicant: MEDTRONIC XOMED, INC.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Patent number: 10213160Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: GrantFiled: August 22, 2017Date of Patent: February 26, 2019Assignee: Medtronic Xomed, Inc.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Patent number: 9931045Abstract: A nerve electrode cuff includes an electrode and a cuff body.Type: GrantFiled: August 16, 2013Date of Patent: April 3, 2018Assignee: MEDTRONIC XOMED, INC.Inventors: William C. Brunnett, David C. Hacker, Carla A. Pagotto, Denise Grant
-
Patent number: 9918675Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: GrantFiled: May 19, 2015Date of Patent: March 20, 2018Assignee: Medtronic Xomed, Inc.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Publication number: 20170360371Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: ApplicationFiled: August 31, 2017Publication date: December 21, 2017Applicant: MEDTRONIC XOMED, INC.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Publication number: 20170347958Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: ApplicationFiled: August 22, 2017Publication date: December 7, 2017Applicant: MEDTRONIC XOMED, INC.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Patent number: 9763624Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface and a first location configured to be positioned at the patient's vocal folds. A first electrode is formed on the exterior surface of the endotracheal tube substantially below the first location to receive EMG signals primarily from below the vocal folds. A second electrode is formed on the exterior surface of the endotracheal tube substantially above the first location to receive EMG signals primarily from above the vocal folds. The first and second electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient.Type: GrantFiled: February 7, 2014Date of Patent: September 19, 2017Assignee: Medtronic Xomed, Inc.Inventors: Maria Charles Vijay Stanislaus, David C. Hacker, Wenjeng Li, David J. Little, Carla A. Pagotto, Dwayne S. Yamasaki
-
Publication number: 20150250423Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.Type: ApplicationFiled: May 19, 2015Publication date: September 10, 2015Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Patent number: 9037226Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive ink electrodes are formed on the exterior surface of the endotracheal tube. The conductive ink electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least one conductor is coupled to the conductive ink electrodes and is configured to carry the EMG signals received by the conductive ink electrodes to a processing apparatus.Type: GrantFiled: October 1, 2010Date of Patent: May 19, 2015Assignee: Medtronic Xomed, Inc.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Publication number: 20140155720Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface and a first location configured to be positioned at the patient's vocal folds. A first electrode is formed on the exterior surface of the endotracheal tube substantially below the first location to receive EMG signals primarily from below the vocal folds. A second electrode is formed on the exterior surface of the endotracheal tube substantially above the first location to receive EMG signals primarily from above the vocal folds. The first and second electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient.Type: ApplicationFiled: February 7, 2014Publication date: June 5, 2014Applicant: Medtronic Xomed, Inc.Inventors: Maria Charles Vijay Stanislaus, David C. Hacker, Wenjeng Li, David J. Little, Carla A. Pagotto, Dwayne S. Yamasaki
-
Patent number: 8688237Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface and a first location configured to be positioned at the patient's vocal folds. A first electrode is formed on the exterior surface of the endotracheal tube substantially below the first location. A second electrode is formed on the exterior surface of the endotracheal tube substantially above the first location. The first and second electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient.Type: GrantFiled: October 1, 2010Date of Patent: April 1, 2014Assignee: Medtronic Xomed, Inc.Inventors: Maria Charles Vijay Stanislaus, David C. Hacker, Wenjeng Li, David J. Little, Carla A. Pagotto, Dwayne S. Yamasaki
-
Publication number: 20130338749Abstract: A nerve electrode cuff includes an electrode and a cuff body.Type: ApplicationFiled: August 16, 2013Publication date: December 19, 2013Applicant: Medtronic Xomed, Inc.Inventors: William C. Brunnett, David C. Hacker, Carla A. Pagotto, Denise Grant
-
Patent number: 8515520Abstract: A nerve monitoring system facilitates monitoring an integrity of a nerve.Type: GrantFiled: December 8, 2008Date of Patent: August 20, 2013Assignee: Medtronic Xomed, Inc.Inventors: William C. Brunnett, David C. Hacker, Carla A. Pagotto, Denise Grant
-
Publication number: 20110245647Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface and a first location configured to be positioned at the patient's vocal folds. A first electrode is formed on the exterior surface of the endotracheal tube substantially below the first location. A second electrode is formed on the exterior surface of the endotracheal tube substantially above the first location. The first and second electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient.Type: ApplicationFiled: October 1, 2010Publication date: October 6, 2011Applicant: MEDTRONIC XOMED, INC.Inventors: Maria Charles Vijay Stanislaus, David C. Hacker, Wenjeng Li, Dave J. Little, Carla A. Pagotto, Dwayne S. Yamasaki
-
Publication number: 20110190596Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive ink electrodes are formed on the exterior surface of the endotracheal tube. The conductive ink electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least one conductor is coupled to the conductive ink electrodes and is configured to carry the EMG signals received by the conductive ink electrodes to a processing apparatus.Type: ApplicationFiled: October 1, 2010Publication date: August 4, 2011Applicant: MEDTRONIC XOMED, INC.Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
-
Publication number: 20100145221Abstract: A nerve monitoring system facilitates monitoring an integrity of a nerve.Type: ApplicationFiled: December 8, 2008Publication date: June 10, 2010Inventors: William C. Brunnett, David C. Hacker, Carla A. Pagotto, Denise Grant