Patents by Inventor Carla Pfeiffer

Carla Pfeiffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11400282
    Abstract: In some examples, an implantable medical device (IMD) that includes a pulse generator comprising a housing, electrodes, and circuitry configured to deliver cardiac pacing via the electrodes. The IMD may further include a lead including at least one of the electrodes, an elongate body, a fixation helix, and a connector segment. A width of the helix transverse to a longitudinal axis of the lead is greatest at a distal end of the helix. A proximal end of the elongate body may be connected to a distal end of the pulse generator, and the helix may be attached to a distal end of the elongate body. The pulse generator may include a first connector tab. A distal end of the connector segment may be configured to receive the proximal end of the elongate body and a proximal end of the connector segment may include at least one second connector member configured to engage the first connector tab.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: August 2, 2022
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Teresa A. Whitman, Carla Pfeiffer, Thomas A. Anderson, Jean Rutten, Paul Adams, Antoine Camps, Richard Cornelussen, Ralph Leinders
  • Publication number: 20220096824
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventors: Ronald A. Drake, Kenneth C. Gardeski, Carla Pfeiffer, Kevin R. Seifert, Lester O. Stener, Matthew D. Bonner
  • Patent number: 11219760
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: January 11, 2022
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Kenneth C. Gardeski, Carla Pfeiffer, Kevin R. Seifert, Lester O. Stener, Matthew D. Bonner
  • Patent number: 11207504
    Abstract: The present disclosure is directed to a shuttle apparatus for detachably joining a catheter to a guidewire so that the joined catheter, extending alongside the guidewire, is in sliding engagement with the guidewire without extending around the guidewire. The apparatus comprises a collar member sized for mounting in sliding engagement around a length of the guidewire, the collar member having a longitudinal axis that approximately aligns along the length, when mounted thereabout, the length being defined between a proximal-most point of the guidewire and a distal point of the guidewire, the distal point being offset proximally from a distal-most point of the guidewire. The apparatus further comprises a plug member coupled to the collar member, the plug member having a longitudinal axis, and the plug member being sized to fit within an opening of the catheter for detachable engagement therewith.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: December 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Matthew D. Bonner, Trent M. Fischer, Carla Pfeiffer, Brian P. Colin, Lester O. Stener
  • Publication number: 20200147365
    Abstract: In some examples, an implantable medical device (IMD) that includes a pulse generator comprising a housing, electrodes, and circuitry configured to deliver cardiac pacing via the electrodes. The IMD may further include a lead including at least one of the electrodes, an elongate body, a fixation helix, and a connector segment. A width of the helix transverse to a longitudinal axis of the lead is greatest at a distal end of the helix. A proximal end of the elongate body may be connected to a distal end of the pulse generator, and the helix may be attached to a distal end of the elongate body. The pulse generator may include a first connector tab. A distal end of the connector segment may be configured to receive the proximal end of the elongate body and a proximal end of the connector segment may include at least one second connector member configured to engage the first connector tab.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventors: Mark T. Marshall, Teresa A. Whitman, Carla Pfeiffer, Thomas A. Anderson, Jean Rutten, Paul Adams, Antoine Camps, Richard Cornelussen, Ralph Leinders
  • Publication number: 20190126034
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Application
    Filed: October 26, 2018
    Publication date: May 2, 2019
    Inventors: Ronald A. Drake, Kenneth C. Gardeski, Carla Pfeiffer, Kevin R. Seifert, Lester O. Stener, Matthew D. Bonner
  • Patent number: 10159834
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 25, 2018
    Assignee: Medtronic, Inc.
    Inventors: Ronald A Drake, Kenneth C Gardeski, Carla Pfeiffer, Kevin R Seifert, Lester O Stener, Matthew D Bonner
  • Publication number: 20180200488
    Abstract: The present disclosure is directed to a shuttle apparatus for detachably joining a catheter to a guidewire so that the joined catheter, extending alongside the guidewire, is in sliding engagement with the guidewire without extending around the guidewire. The apparatus comprises a collar member sized for mounting in sliding engagement around a length of the guidewire, the collar member having a longitudinal axis that approximately aligns along the length, when mounted thereabout, the length being defined between a proximal-most point of the guidewire and a distal point of the guidewire, the distal point being offset proximally from a distal-most point of the guidewire. The apparatus further comprises a plug member coupled to the collar member, the plug member having a longitudinal axis, and the plug member being sized to fit within an opening of the catheter for detachable engagement therewith.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 19, 2018
    Inventors: Ronald A. Drake, Matthew D. Bonner, Trent M. Fischer, Carla Pfeiffer, Brian P. Colin, Lester O. Stener
  • Publication number: 20170209690
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 27, 2017
    Inventors: Ronald A Drake, Kenneth C Gardeski, Carla Pfeiffer, Kevin R Seifert, Lester O Stener, Matthew D Bonner