Patents by Inventor Carlo Cattani

Carlo Cattani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130167527
    Abstract: An exhaust gas turbocharger housing (10) for an engine includes a main turbine housing portion (14) and a throat portion (12) defining an exhaust gas passageway (20) that is in upstream fluid communication with the main turbine housing. The exhaust passageway (20) communicates exhaust gases (EG) to the main turbine housing portion (14). A flow divider (22) generally bisects the exhaust gas passageway (20) forming a first inlet passageway (24A) and a second inlet passageway (24B). A flow hole (26) is disposed through the flow divider (22) for permitting the fluid communication of exhaust gas (EG) from the first inlet passageway (24A) to the second inlet passageway (24B).
    Type: Application
    Filed: February 24, 2011
    Publication date: July 4, 2013
    Inventors: Luis Carlos Cattani, John Zagone, Paul Gottemoller, James P. Burke, Michael D. Bartkowicz
  • Patent number: 8448626
    Abstract: An engine braking system includes a turbocharger having a turbine and a compressor. An exhaust manifold includes a first pipe for channeling a first portion of the engine exhaust and a second pipe for channeling a second portion of the engine exhaust. The first and second pipes are connected to an inlet of the turbine. A cross pipe, as part of an exhaust gas recirculation (EGR) conduit, is open between the first and second pipes and at one end to the remaining portion of the EGR conduit. A valve can be arranged within the cross pipe and ca be operable in a first mode of operation to block flow between the first and second pipes and allow flow between the first pipe and the remaining portion of the EGR conduit and to allow flow between the first and second pipes and the inlet of the turbine. The valve is operable in a second mode of operation to allow flow between the first and second pipes, and to reduce or block flow between the second pipe and the turbine inlet.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 28, 2013
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Steven J. Dickerson, Luis Carlos Cattani, Martin R. Zielke, Richard Franzwa, Qianfan Xin, Paul Gottemoller, Dirk Jungen
  • Patent number: 8397681
    Abstract: An expansion tank (10) for a vehicle cooling system (18) of an engine using a liquid coolant (16) includes a tank body (12) defining a first volume (V1) containing coolant (16), wherein the coolant defines a variable coolant elevation level (CEL) within the tank body. The tank body (12) also defines an upper volume (20) containing air. A bladder (14) is disposed in the tank body (12) and defines a second volume (V2) containing air. The bladder (14) includes a flexible membrane (36) actuated by an actuator (46). When the engine is stopped or is below a predetermined temperature, the flexible membrane (36) is moveable to a first position (FP) which lowers the coolant elevation level (CEL), and when the engine is started or reaches a predetermined temperature, the flexible membrane (36) is moveable to a second position (SP) which raises the coolant elevation level. A communicating line (38) is in fluid communication between the upper volume (20) and the second volume (V2) to fluidly communicate air therebetween.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 19, 2013
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Peter Popadiuc, Martin R. Zielke, Luis Carlos Cattani, Robert L. Rowells, George L. Banta, III, Ernst Duerr
  • Patent number: 8393314
    Abstract: A circuit for cooling exhaust gas being recirculated through an EGR system (36) of an engine (10) from an exhaust system (20) successively through first and second heat exchangers (38, 40) to an intake system (16) for entrainment with intake air. Each heat exchanger has a respective coolant inlet through which liquid coolant enters and a respective coolant outlet through which liquid coolant exits after having absorbed heat from recirculated exhaust gas. The circuit has a third heat exchanger (32) to which coolant coming from the outlet of one of the first and second heat exchangers rejects heat, and parallel branches (84, 86) through which coolant enters the inlet of the other of the first and second heat exchangers. One of the parallel branches has a fourth heat exchanger (34) to which coolant flowing through that branch rejects heat, and one or more devices (50, 50A) for controlling the quantity of coolant flowing through each branch.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: March 12, 2013
    Assignee: International Engine Intellectual Property Company, LLC.
    Inventors: Bashar Melhem, Luis Carlos Cattani, Martin Zielke, Robert Rowells
  • Patent number: 8375713
    Abstract: A method for dislodging exhaust gas deposits from an exhaust gas recirculation (EGR) cooler (26) associated with an engine includes the steps of providing at least one on-board gas source (S) for providing a gas (G) at a superatmospheric pressure, and placing the EGR cooler in fluid communication with the gas source through a supply conduit (44, 144). The supply conduit (44, 144) includes at least one valve (V) that is selectively operable to a closed condition closing the supply conduit and to an open position opening the supply conduit. The method also includes the step of operating the at least one valve (V) from the closed condition to the open condition to allow the superatmospheric gas (G) to flow through the supply conduit (44, 144) to the EGR cooler (26).
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 19, 2013
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Steve Ryan, Luis Carlos Cattani
  • Patent number: 8307646
    Abstract: A system for driving an EGR stream for an engine includes an exhaust gas turbine, a main compressor and a supplemental EGR compressor. The turbine drives the main compressor to pressurize intake air and drives the supplemental EGR compressor to pressurize an EGR exhaust gas stream to be introduced into the intake air system. A supplemental EGR compressor takes suction of exhaust gas downstream from the turbine. A three-way valve proportions exhaust gas between the engine exhaust gas discharge conduit and the suction of the supplemental EGR compressor. The turbine drives a shaft and the main compressor and the supplemental EGR compressor are driven by having corresponding compressor wheels fixed onto the common shaft.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: November 13, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Luis Carlos Cattani, Paul Gottemoller, Bashar Y. Melhem, Martin R. Zielke
  • Patent number: 8281587
    Abstract: A control system for engine braking for a vehicle powered by a turbocharged engine uses a supercharger to assist a turbocharger compressor to boost turbocharger air flow into the engine cylinders. An engine driven air pumping device draws ambient air, or alternately exhaust gas through the pump inlet, compresses the air, and delivers the compressed air through the pump outlet to the turbocharger compressor inlet or alternately the turbocharger compressor outlet. The increased air flow into the cylinders and out of the cylinder exhaust valves increases retarding power of the vehicle.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: October 9, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Qianfan Xin, Martin R. Zielke, Michael D. Bartkowicz, Luis Carlos Cattani, Steve Gravante, Timothy Prochnau, Antoun Y. Calash, John L. Cagney
  • Patent number: 8201544
    Abstract: A breather system for a crankcase of an internal combustion engine, includes a centrifuge driven by the engine turbocharger. The turbocharger has a turbine and a compressor, the compressor driven by the turbine. The centrifuge is driven by the turbine on a common shaft with the compressor and includes a centrifuge inlet, a gas outlet and an oil outlet. Crankcase gas is delivered to the centrifuge and oil is removed by the centrifuge and collected within the turbocharger housing and substantially oil free gas is passed through the centrifuge, through an axially passage in the shaft and into an inlet of the compressor.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: June 19, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Luis Carlos Cattani, Paul Gottemoller
  • Patent number: 8146542
    Abstract: A first loop contains engine coolant passageways (28, 30) and a first radiator (34). A second loop contains a first EGR cooler (48). A third loop contains a second EGR cooler (50), a second radiator (36), a charge air cooler (26LP), a first valve (66), and a second valve (64). Valve (64) apportions coolant flow entering an inlet (64A) to parallel flow paths, one including second radiator (36) and the other being a bypass around radiator (36). The apportioned flows merge into confluent flow to both an inlet of charge air cooler (26LP) and a first inlet (66B) of valve (66). Valve (66) has an outlet (66C) communicated to an inlet of second EGR cooler (50). The first condition of valve (66) closes a second inlet (66A) to coolant flowing toward both the second inlet (66A) and inlet (64A) while opening inlet (66B) to outlet (66C).
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: April 3, 2012
    Assignee: International Engine Intellectual Property Company LLC
    Inventors: Luis Carlos Cattani, Peter Popadiuc, Bashar Y. Melhem, Martin R. Zielke
  • Patent number: 8136770
    Abstract: A mount (50) for mounting an exhaust gas component (30, 32, 16) in an exhaust pipe (34) or in a component housing includes a spring band (54) and a plurality of spring fingers (64). The spring band (54) is configured to contact and substantially pass around an outer surface (52) of the exhaust gas component (30, 32, 16). The plurality of spring fingers (64) extend from the spring band (54) generally axially with respect to the exhaust gas component (30, 32, 16) and generally radially from the spring band. The spring fingers (64) contact the exhaust gas component (30, 32, 16).
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: March 20, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Scott A. Beatty, Gregory A. Griffin, Ivan M. Lazich, Luis Carlos Cattani
  • Publication number: 20110173973
    Abstract: A turbine (22T) of a turbocharger (22) has a housing (24), a turbine wheel (30) disposed within an interior of the housing on a shaft (32) for rotation with the shaft about an axis of rotation (34). A scroll (38) directs a gas toward the axis for imparting rotation to the turbine wheel and shaft. A ring (44) is concentric with the axis and is selectively positionable along the axis for selectively restricting gas directed from the scroll toward the axis. A mechanism (48), including a first-class lever (86) pivotally mounted on the housing, positions the ring along the axis.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 21, 2011
    Applicant: International Engine Intellectrual Property Company, LLC
    Inventors: Luis Carlos Cattani, John Zagone, Paul Gottemoller, James P. Burke
  • Publication number: 20110131979
    Abstract: A method for dislodging exhaust gas deposits from an exhaust gas recirculation (EGR) cooler (26) associated with an engine includes the steps of providing at least one on-board gas source (S) for providing a gas (G) at a superatmospheric pressure, and placing the EGR cooler in fluid communication with the gas source through a supply conduit (44, 144). The supply conduit (44, 144) includes at least one valve (V) that is selectively operable to a closed condition closing the supply conduit and to an open position opening the supply conduit. The method also includes the step of operating the at least one valve (V) from the closed condition to the open condition to allow the superatmospheric gas (G) to flow through the supply conduit (44, 144) to the EGR cooler (26).
    Type: Application
    Filed: December 4, 2009
    Publication date: June 9, 2011
    Applicant: International Engine Intellectual Property Company, LLC
    Inventors: Steve Ryan, Luis Carlos Cattani
  • Publication number: 20110120411
    Abstract: An apparatus and method for varying a counter force to valve spring preload of a brake exhaust valve to undertake engine braking, includes a solenoid controlled hydraulic actuator. A control cylinder is arranged to move with a rocker arm and a control piston is arranged to slide within the control cylinder. During engine braking the control piston slides to press the valve stem to open the brake exhaust valve. An oil chamber is arranged above the control piston and is open into the control cylinder. A source of pressurized oil is selectably introduced into the oil chamber by the solenoid controlled hydraulic actuator to slide the control piston within the control cylinder to open and hold open the brake exhaust valve.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 26, 2011
    Applicant: International Engine Intellectual Property Company, LLC
    Inventors: Ying Ren, Michale D. Bartkowicz, Qianfan Xin, Martin R. Zielke, Luis Carlos Cattani
  • Publication number: 20110083648
    Abstract: A circuit for cooling exhaust gas being recirculated through an EGR system (36) of an engine (10) from an exhaust system (20) successively through first and second heat exchangers (38, 40) to an intake system (16) for entrainment with intake air. Each heat exchanger has a respective coolant inlet through which liquid coolant enters and a respective coolant outlet through which liquid coolant exits after having absorbed heat from recirculated exhaust gas. The circuit has a third heat exchanger (32) to which coolant coming from the outlet of one of the first and second heat exchangers rejects heat, and parallel branches (84, 86) through which coolant enters the inlet of the other of the first and second heat exchangers. One of the parallel branches has a fourth heat exchanger (34) to which coolant flowing through that branch rejects heat, and one or more devices (50, 50A) for controlling the quantity of coolant flowing through each branch.
    Type: Application
    Filed: October 12, 2009
    Publication date: April 14, 2011
    Applicant: International Engine Intellectual Property Company LLC
    Inventors: Luis Carlos Cattani, Robert L. Rowells, Bashar Y. Melhem, Martin R. Zielke
  • Publication number: 20110048345
    Abstract: An expansion tank (10) for a vehicle cooling system (18) of an engine using a liquid coolant (16) includes a tank body (12) defining a first volume (V1) containing coolant (16), wherein the coolant defines a variable coolant elevation level (CEL) within the tank body. The tank body (12) also defines an upper volume (20) containing air. A bladder (14) is disposed in the tank body (12) and defines a second volume (V2) containing air. The bladder (14) includes a flexible membrane (36) actuated by an actuator (46). When the engine is stopped or is below a predetermined temperature, the flexible membrane (36) is moveable to a first position (FP) which lowers the coolant elevation level (CEL), and when the engine is started or reaches a predetermined temperature, the flexible membrane (36) is moveable to a second position (SP) which raises the coolant elevation level. A communicating line (38) is in fluid communication between the upper volume (20) and the second volume (V2) to fluidly communicate air therebetween.
    Type: Application
    Filed: September 2, 2009
    Publication date: March 3, 2011
    Applicant: International Engine Intellectual Property Company, LLC.
    Inventors: Peter Popadiuc, Martin R. Zielke, Luis Carlos Cattani, Robert L. Rowells, George L. Banta, III, Ernst Duerr
  • Publication number: 20110042546
    Abstract: A mount (50) for mounting an exhaust gas component (30, 32, 16) in an exhaust pipe (34) or in a component housing includes a spring band (54) and a plurality of spring fingers (64). The spring band (54) is configured to contact and substantially pass around an outer surface (52) of the exhaust gas component (30, 32, 16). The plurality of spring fingers (64) extend from the spring band (54) generally axially with respect to the exhaust gas component (30, 32, 16) and generally radially from the spring band. The spring fingers (64) contact the exhaust gas component (30, 32, 16).
    Type: Application
    Filed: August 24, 2009
    Publication date: February 24, 2011
    Applicant: International Engine Intellectual Property Company, LLC
    Inventors: Scott A. Beatty, Gregory A. Griffin, Ivan M. Lazich, Luis Carlos Cattani
  • Publication number: 20110036088
    Abstract: A control system for engine braking for a vehicle powered by a turbocharged engine uses a supercharger to assist a turbocharger compressor to boost turbocharger air flow into the engine cylinders. An engine driven air pumping device draws ambient air, or alternately exhaust gas through the pump inlet, compresses the air, and delivers the compressed air through the pump outlet to the turbocharger compressor inlet or alternately the turbocharger compressor outlet. The increased air flow into the cylinders and out of the cylinder exhaust valves increases retarding power of the vehicle.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Applicant: International Engine Intellectual Property Company, LLC
    Inventors: Qianfan Xin, Martin R. Zielke, Michael D. Bartkowicz, Luis Carlos Cattani, Steve Gravante, Timothy Prochnau, Antoun Y. Calash, John L. Cagney
  • Publication number: 20110030371
    Abstract: A system for driving an EGR stream for an engine includes an exhaust gas turbine, a main compressor and a supplemental EGR compressor. The turbine drives the main compressor to pressurize intake air and drives the supplemental EGR compressor to pressurize an EGR exhaust gas stream to be introduced into the intake air system. A supplemental EGR compressor takes suction of exhaust gas downstream from the turbine. A three-way valve proportions exhaust gas between the engine exhaust gas discharge conduit and the suction of the supplemental EGR compressor. The turbine drives a shaft and the main compressor and the supplemental EGR compressor are driven by having corresponding compressor wheels fixed onto the common shaft.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Applicant: International Engine Intellectual Property Company, LLC
    Inventors: Luis Carlos Cattani, Paul Gottemoller, Bashar Y. Melhem, Martin R. Zielke
  • Publication number: 20110023849
    Abstract: A breather system for a crankcase of an internal combustion engine, includes a centrifuge driven by the engine turbocharger. The turbocharger has a turbine and a compressor, the compressor driven by the turbine. The centrifuge is driven by the turbine on a common shaft with the compressor and includes a centrifuge inlet, a gas outlet and an oil outlet. Crankcase gas is delivered to the centrifuge and oil is removed by the centrifuge and collected within the turbocharger housing and substantially oil free gas is passed through the centrifuge, through an axially passage in the shaft and into an inlet of the compressor.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 3, 2011
    Applicant: International Engine Intellectual Property Company LLC
    Inventors: Luis Carlos Cattani, Paul Gottemoller
  • Publication number: 20110023796
    Abstract: A first loop contains engine coolant passageways (28, 30) and a first radiator (34). A second loop contains a first EGR cooler (48). A third loop contains a second EGR cooler (50), a second radiator (36), a charge air cooler (26LP), a first valve (66), and a second valve (64). Valve (64) apportions coolant flow entering an inlet (64A) to parallel flow paths, one including second radiator (36) and the other being a bypass around radiator (36). The apportioned flows merge into confluent flow to both an inlet of charge air cooler (26LP) and a first inlet (66B) of valve (66). Valve (66) has an outlet (66C) communicated to an inlet of second EGR cooler (50). The first condition of valve (66) closes a second inlet (66A) to coolant flowing toward both the second inlet (66A) and inlet (64A) while opening inlet (66B) to outlet (66C).
    Type: Application
    Filed: July 29, 2009
    Publication date: February 3, 2011
    Applicant: International Engine Intellectual Property Company, LLC
    Inventors: Luis Carlos Cattani, Peter Popadiuc, Bashar Y. Melhem, Martin R. Zielke