Patents by Inventor Carlos A. Reyes

Carlos A. Reyes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12090315
    Abstract: A controller for an implantable blood pump, the implantable blood pump having an impeller. The controller includes processing circuitry configured to reduce a speed of the impeller from a set speed to a first reduced speed if a first predetermined amount of time of detected suction events occurs during a first time interval and increase the speed of the impeller from the first reduced speed if a second predetermined amount of time or less of detected suction events occur during a second time interval and a third predetermined amount of time or less of detected suction events.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: September 17, 2024
    Assignee: Medtronic, Inc.
    Inventors: D'anne E. Kudlik, Carlos Reyes, Robert W. Stadler
  • Patent number: 12083331
    Abstract: A control circuit for controlling a pump speed of a blood pump implanted in a patient including a processor in communication with the implanted blood pump, the processor having processing circuitry configured to reduce a pump speed relative to a standard set speed based on a timing of a systole phase of the patient, the systole phase including a first segment during which a ventricular pressure is at its greatest and a second segment occurring after the first segment during which the ventricular pressure is at its lowest, the pump speed being reduced during the second segment.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: September 10, 2024
    Assignee: HeartWare, Inc.
    Inventors: Katherine Chorpenning, Carlos Reyes
  • Patent number: 12042646
    Abstract: A method of determining a heart rate of a patient having an implanted blood pump including applying a voltage to a plurality of coils of a stator of the blood pump to produce an electromagnetic force to rotate a rotor in communication with the plurality of coils; displaying a waveform associated with a back electromotive force in the plurality of coils of the blood pump, the waveform being proportional to an axial position of the rotor relative to the stator; determining a time interval between a first alteration in the waveform relative to a baseline and a second alteration in the waveform relative to the baseline; and determining the heart rate of the patient based on the time interval.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: July 23, 2024
    Assignee: HeartWare, Inc.
    Inventors: Justin Wolman, Fernando Casas, Carlos Reyes
  • Publication number: 20240148958
    Abstract: The present invention relates to methods, devices and systems for performing the removal of thrombus from a vessel lumen. More particularly the present invention relates to a thrombectomy system that includes an elongate catheter and a disposable aspiration pump and methods of performing medical procedures to remove clots, thrombus and emboli to re-establish the normal intravascular flow of blood.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 9, 2024
    Inventors: Carlos Reyes, William Sowers
  • Patent number: 11969588
    Abstract: A method of operating an implantable blood pump having a first stator, a second stator, and an impeller movably disposed there between. The method includes applying a first voltage waveform at first phase to the first stator to generate a magnetic field to rotate the impeller. A second voltage waveform is applied at a second phase shifted from the first phase to the second stator to rotate the impeller, the second voltage waveform is asymmetric to the first voltage waveform.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 30, 2024
    Assignee: HeartWare, Inc.
    Inventors: Mark S. Egler, Fernando Casas, Carlos Reyes, Jeffrey A. LaRose
  • Publication number: 20240066281
    Abstract: A method of estimating a patient's cardiac preload in a patient having an implantable blood pump. The method includes generating a current waveform from operation of the implanted blood pump. A beat-to-beat pump filling index (PFI) is calculated, the PFI is calculated by dividing a current amplitude component by a time component, the amplitude component being calculated by subtracting a trough of the current waveform from an inflection point divided by an amplitude difference of peak to trough of the waveform, the time component being calculated by dividing a time between the trough and the inflection point by a time between the peak and the trough. An alert is generated if the PFI deviates from predetermined thresholds.
    Type: Application
    Filed: February 1, 2022
    Publication date: February 29, 2024
    Inventors: Neethu Lekshmi Vasudevan Jalaja, Carlos Reyes
  • Publication number: 20230310836
    Abstract: A control circuit for a sensorless implantable blood pump configured to determine mitral valve regurgitation includes processing circuitry configured to generate an estimated blood flow waveform from the sensorless implanted blood pump and generate an alert if between an end period of diastole and a beginning period of systole a measured amplitude of the estimated blood flow waveform does not include an inflection point.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Inventors: Carlos Reyes, Neethu Lekshmi Vasudevan Jalaja
  • Patent number: 11708256
    Abstract: A bag cutter for opening a sealed package using at least one of a blade and a piercer. Preferably, at least one blade is disposed partially within a cutout of an arm in a manner that exposes an edge of the blade. A piercer can comprise an extension of a cutout edge or be located on any other suitable portion of an arm. Another blade can be provided that is substantially perpendicular to the blade within a cutout, and juxtaposable against a cutting surface.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 25, 2023
    Assignee: Spellbound Development Group, Inc.
    Inventors: Earl Votolato, Carlos Reyes
  • Patent number: 11707617
    Abstract: A control circuit for a sensorless implantable blood pump configured to determine mitral valve regurgitation includes processing circuitry configured to generate an estimated blood flow waveform from the sensorless implanted blood pump and generate an alert if between an end period of diastole and a beginning period of systole a measured amplitude of the estimated blood flow waveform does not include an inflection point.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 25, 2023
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Neethu Lekshmi Vasudevan Jalaja
  • Patent number: 11653841
    Abstract: A method of determining a mean arterial pressure index of a patient having an implantable blood pump including determining a pump speed and a pump flow value; analyzing the pump speed and the pump flow value to a pump loss constant value; determining a graft hydraulic resistance value during a systolic phase of a cardiac cycle based on the analysis of the pump speed and the pump flow value to the pump loss constant value; determining a mean arterial pressure index during a diastolic phase of the cardiac cycle based on the determined graft hydraulic resistance value; comparing the mean arterial pressure index of the patient to a mean arterial pressure index range; and generating an alert when the mean arterial pressure index varies with respect to a mean arterial pressure index range.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 23, 2023
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Fernando Casas
  • Patent number: 11554260
    Abstract: A method of responding to an adverse event associated with an implantable blood pump including detecting the adverse event, reducing a pump speed of the blood pump relative to a set pump speed in response to the detected adverse event, and determining whether at least one of a group consisting of the adverse event and a second adverse event is present following the reducing of the pump speed of the blood pump. If the at least one of the group consisting of the adverse event and a second adverse event is not present, the method includes increasing the pump speed to the set pump speed and if the at least one of the group consisting of the adverse event and a second adverse event is present while increasing the pump speed to the set pump speed, the method includes reducing the pump speed to a maximum safe operating speed.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: January 17, 2023
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Katherine Chorpenning, Antonio Luiz Silva Ferreira, Neethu Lekshmi Vasudevan Jalaja, Justin Wolman, Fernando Casas
  • Patent number: 11446481
    Abstract: A method of controlling an implantable blood pump including a housing having a proximal portion including an inlet, a distal portion including an outlet, and an impeller therein, the method including detecting when a pressure in the housing exceeds a pressure threshold and executing a first vector control command to displace the impeller axially in a distal direction from a primary position to a secondary position different than the primary position in response to the pressure exceeding the pressure threshold.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: September 20, 2022
    Assignee: HEARTWARE, INC.
    Inventors: Justin Wolman, Fernando Casas, Carlos Reyes, Thomas R. Johnson
  • Patent number: 11376419
    Abstract: A method of controlling a blood pump having a predefined hydraulic performance including at least from the group consisting of estimating and measuring an instantaneous flow rate during operation of the blood pump at a predetermined rotational speed of an impeller of the blood pump, the instantaneous flow rate including a plurality of flow rate data points. The plurality of flow rate data points define a trajectory around at least one from the group consisting of an operational point of a predefined pressure-flow curve associated with the predetermined rotational speed of the impeller of the blood pump and a target operational point of a target pressure-flow curve different than the predefined pressure-flow curve. The predetermined rotational speed of the impeller is adjusted until the plurality of flow rate data points define a predetermined trajectory around at least one of the operational point and the target operational point.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: July 5, 2022
    Assignee: HEARTWARE, INC.
    Inventors: Carlos Reyes, Fernando Casas
  • Publication number: 20220203083
    Abstract: A method of determining a heart rate of a patient having an implanted blood pump including applying a voltage to a plurality of coils of a stator of the blood pump to produce an electromagnetic force to rotate a rotor in communication with the plurality of coils; displaying a waveform associated with a back electromotive force in the plurality of coils of the blood pump, the waveform being proportional to an axial position of the rotor relative to the stator; determining a time interval between a first alteration in the waveform relative to a baseline and a second alteration in the waveform relative to the baseline; and determining the heart rate of the patient based on the time interval.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 30, 2022
    Inventors: Justin Wolman, Fernando Casas, Carlos Reyes
  • Patent number: 11318295
    Abstract: A blood pump having a housing including an inlet element. The inlet element has a proximal portion sized to be received within at least a portion of a heart of a patient and defines a major longitudinal axis. A rotor is configured to rotate within the housing about the major longitudinal axis and impel blood from heart. At least one stator is disposed within the housing and positioned within the housing at least one from the group consisting of upstream and downstream from the rotor. During operation of the blood pump the rotor is maintained at an oblique angle with respect to the major longitudinal axis.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 3, 2022
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Justin Wolman
  • Patent number: 11311711
    Abstract: A method of controlling a blood pump including executing a control command to temporarily displace an impeller of the blood pump within a pump housing from a first axial position relative to the pump housing to a second axial position a distance away from the first axial position using a vector control method, and causing the impeller to move from the second axial position to a third axial position, the third axial position including a positive and a negative displacement of the impeller relative to the first axial position.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 26, 2022
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Carlos Reyes, Justin Wolman, Thomas R. Johnson
  • Patent number: 11273299
    Abstract: A method of determining a heart rate of a patient having an implanted blood pump including applying a voltage to a plurality of coils of a stator of the blood pump to produce an electromagnetic force to rotate a rotor in communication with the plurality of coils; displaying a waveform associated with a back electromotive force in the plurality of coils of the blood pump, the waveform being proportional to an axial position of the rotor relative to the stator; determining a time interval between a first alteration in the waveform relative to a baseline and a second alteration in the waveform relative to the baseline; and determining the heart rate of the patient based on the time interval.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 15, 2022
    Assignee: HeartWare, Inc.
    Inventors: Justin Wolman, Fernando Casas, Carlos Reyes
  • Patent number: 11154701
    Abstract: The present disclosure provides for methods and systems for determining heart rate of a patient. Based on motor current signals of a ventricular assist device (VAD), each of first, second and third events in the measured current signal may be detected, the first event being indicative of a rise or fall in the current signal, the second event being indicative of a rise or fall in the current signal in the opposite direction as the first event, and the third event being indicative of a rise or fall in the current signal in the same direction as the first event. A timer counter may be initiated upon detection of the first event, and an elapsed time may be measured upon detection of the third event. Heart rate may be determined based on the elapsed time of the timer counter.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: October 26, 2021
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Fernando Casas, Justin Wolman
  • Publication number: 20210322755
    Abstract: A method of operating an implantable blood pump having a first stator, a second stator, and an impeller movably disposed there between. The method includes applying a first voltage waveform at first phase to the first stator to generate a magnetic field to rotate the impeller. A second voltage waveform is applied at a second phase shifted from the first phase to the second stator to rotate the impeller, the second voltage waveform is asymmetric to the first voltage waveform.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 21, 2021
    Inventors: Mark S. Egler, Fernando Casas, Carlos Reyes, Jeffrey A. LaRose
  • Publication number: 20210260263
    Abstract: A controller for an implantable blood pump, the implantable blood pump having an impeller.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 26, 2021
    Inventors: D'Anne E. KUDLIK, Carlos REYES, Robert W. STADLER