Patents by Inventor Carlos A. Ricci
Carlos A. Ricci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11701028Abstract: In one aspect, a computer-implemented method includes receiving a signal corresponding to impedance across a patient's chest cavity; filtering the signal using one or more filters that reduce noise and center the signal around a zero baseline; adjusting an amplitude of the filtered signal based on a threshold value; separating the amplitude-adjusted signal into component signals, where each of the component signals represents a frequency-limited band; detecting a fractional phase transition of a component signal of the component signals; selecting a dominant component signal from the component signals based on amplitudes of the component signals at a time corresponding to the detected fractional phase transition; determining a frequency of the dominant component signal at the time corresponding to the detected fractional phase transition; and determining a respiratory rate of the patient based on the determined frequency.Type: GrantFiled: July 7, 2020Date of Patent: July 18, 2023Assignee: VIOS MEDICAL, INC.Inventors: Carlos A. Ricci, Vladimir V. Kovtun, Scott Thomas Mazar
-
Patent number: 11602311Abstract: In one aspect, a computer-implemented method includes receiving signals corresponding to wavelengths of light detected by an optical sensor placed in proximity to a patient's body, and for each received signal: separating the signal into an AC signal and a DC signal; separating the AC signal into component signals; analyzing the component signals through a fractional phase transformation to identify a desired component signal and harmonic signals associated with the desired component signal; smoothing the desired component signal, the harmonic signals, and the DC signal; and combining the smoothed desired component signal, the smoothed harmonic signals, and the smoothed DC signal to generate a modulation signal. A modulation ratio signal is generated based on the modulation signals derived from the signals, and a peripheral oxygen saturation (SpO2) of the patient's body is determined based on the modulation ratio signal.Type: GrantFiled: January 29, 2019Date of Patent: March 14, 2023Assignee: MURATA VIOS, INC.Inventors: Scott Thomas Mazar, Carlos A. Ricci, Vladimir V. Kovtun
-
Patent number: 11190166Abstract: The present invention provides a system and method for representing quasi-periodic (“qp”) waveforms comprising, representing a plurality of limited decompositions of the qp waveform, wherein each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. These decompositions are stored into a data structure having a plurality of attributes. Optionally, these attributes are used to reconstruct the qp waveform, or patterns or features of the qp wave can be determined by using various pattern-recognition techniques. Some embodiments provide a system that uses software, embedded hardware or firmware to carry out the above-described method. Some embodiments use a computer-readable medium to store the data structure and/or instructions to execute the method.Type: GrantFiled: December 7, 2015Date of Patent: November 30, 2021Assignee: Murata Vios, Inc.Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20210038115Abstract: In one aspect, a computer-implemented method includes receiving a signal corresponding to impedance across a patient's chest cavity; filtering the signal using one or more filters that reduce noise and center the signal around a zero baseline; adjusting an amplitude of the filtered signal based on a threshold value; separating the amplitude-adjusted signal into component signals, where each of the component signals represents a frequency-limited band; detecting a fractional phase transition of a component signal of the component signals; selecting a dominant component signal from the component signals based on amplitudes of the component signals at a time corresponding to the detected fractional phase transition; determining a frequency of the dominant component signal at the time corresponding to the detected fractional phase transition; and determining a respiratory rate of the patient based on the determined frequency.Type: ApplicationFiled: July 7, 2020Publication date: February 11, 2021Inventors: Carlos A. Ricci, Vladimir V. Kovtun, Scott Thomas Mazar
-
Publication number: 20200390355Abstract: In one aspect, a computer-implemented method includes receiving a signal corresponding to electrical activity of a patient's heart; separating the signal into component signals; detecting fractional phase transitions for each of the component signals; generating, at each of the detected fractional phase transitions for each of the component signals, a data object containing a time value and an amplitude value; for a set of consecutive data objects associated with a first component signal of the component signals, detecting a peak amplitude; for a set of consecutive data objects associated with a second component signal of the component signals, detecting a peak amplitude; determining that the peak amplitudes satisfy a first time; calculating a consolidated peak amplitude and a consolidated peak time; and in response to determining that the consolidated peak amplitude satisfies both an amplitude criterion and a second time criterion, providing an indication of a detected heartbeat.Type: ApplicationFiled: May 21, 2020Publication date: December 17, 2020Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20200237315Abstract: In one aspect, a computer-implemented method includes receiving signals corresponding to wavelengths of light detected by an optical sensor placed in proximity to a patient's body, and for each received signal: separating the signal into an AC signal and a DC signal; separating the AC signal into component signals; analyzing the component signals through a fractional phase transformation to identify a desired component signal and harmonic signals associated with the desired component signal; smoothing the desired component signal, the harmonic signals, and the DC signal; and combining the smoothed desired component signal, the smoothed harmonic signals, and the smoothed DC signal to generate a modulation signal. A modulation ratio signal is generated based on the modulation signals derived from the signals, and a peripheral oxygen saturation (SpO2) of the patient's body is determined based on the modulation ratio signal.Type: ApplicationFiled: January 29, 2019Publication date: July 30, 2020Applicant: Vios Medical, Inc.Inventors: Scott Thomas Mazar, Carlos A. Ricci, Vladimir V. Kovtun
-
Patent number: 10367476Abstract: A system and method for representing quasi-periodic waveforms, for example, representing a plurality of limited decompositions of the quasi-periodic waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the quasi-periodic waveform. Data-structure attributes are created and used to reconstruct the quasi-periodic waveform. Features of the quasi-periodic wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g.Type: GrantFiled: August 14, 2017Date of Patent: July 30, 2019Assignee: Vios Medical, Inc.Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20180166089Abstract: A system and method for representing quasi-periodic waveforms, for example, representing a plurality of limited decompositions of the quasi-periodic waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the quasi-periodic waveform. Data-structure attributes are created and used to reconstruct the quasi-periodic waveform. Features of the quasi-periodic wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g.Type: ApplicationFiled: August 14, 2017Publication date: June 14, 2018Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Patent number: 9734838Abstract: A system and method for representing quasi-periodic waveforms, for example, representing a plurality of limited decompositions of the quasi-periodic waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the quasi-periodic waveform. Data-structure attributes are created and used to reconstruct the quasi-periodic waveform. Features of the quasi-periodic wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g.Type: GrantFiled: April 19, 2016Date of Patent: August 15, 2017Assignee: Vios Medical Singapore Pte. Ltd.Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20170112450Abstract: Medical devices and methods for making and using medical devices are disclosed. A method for removing an artifact of a biological reference signal present in a biological source signal may comprise sensing a biological reference signal with one or more electrodes and sensing a biological source signal, wherein the biological source signal comprises an artifact of the biological reference signal. The method may further comprise determining, based on the biological reference signal, the artifact of the biological reference signal and subtracting the artifact of the biological reference signal from the sensed biological source signal.Type: ApplicationFiled: January 3, 2017Publication date: April 27, 2017Inventors: Vladimir V. Kovtun, Carlos A. Ricci, Pramodsingh H. Thakur, Shibaji Shome
-
Patent number: 9530425Abstract: A system and method for representing quasi-periodic (“qp”) waveforms, for example, representing a plurality of limited decompositions of the qp waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. Data-structure attributes are created and used to reconstruct the qp waveform. Features of the qp wave are tracked using pattern-ecognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g., lowest frequency “rate” component) that varies over time (by a factor of two to three) many overlapping filters use bandpass and overlap parameters that allow tracking the component's frequency version on changing quarter-phase basis.Type: GrantFiled: March 17, 2014Date of Patent: December 27, 2016Assignee: Vios Medical Singapore Pte. Ltd.Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20160232913Abstract: A system and method for representing quasi-periodic waveforms, for example, representing a plurality of limited decompositions of the quasi-periodic waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the quasi-periodic waveform. Data-structure attributes are created and used to reconstruct the quasi-periodic waveform. Features of the quasi-periodic wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g.Type: ApplicationFiled: April 19, 2016Publication date: August 11, 2016Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Patent number: 9319028Abstract: A system and method for representing quasi-periodic waveforms, for example, representing a plurality of limited decompositions of the quasi-periodic waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the quasi-periodic waveform. Data-structure attributes are created and used to reconstruct the quasi-periodic waveform. Features of the quasi-periodic wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g.Type: GrantFiled: March 17, 2014Date of Patent: April 19, 2016Assignee: Vios Medical Singapore Pte. Ltd.Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20160087603Abstract: The present invention provides a system and method for representing quasi-periodic (“qp”) waveforms comprising, representing a plurality of limited decompositions of the qp waveform, wherein each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. These decompositions are stored into a data structure having a plurality of attributes. Optionally, these attributes are used to reconstruct the qp waveform, or patterns or features of the qp wave can be determined by using various pattern-recognition techniques. Some embodiments provide a system that uses software, embedded hardware or firmware to carry out the above-described method. Some embodiments use a computer-readable medium to store the data structure and/or instructions to execute the method.Type: ApplicationFiled: December 7, 2015Publication date: March 24, 2016Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Patent number: 9209782Abstract: The present invention provides a system and method for representing quasi-periodic (“qp”) waveforms comprising, representing a plurality of limited decompositions of the qp waveform, wherein each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. These decompositions are stored into a data structure having a plurality of attributes. Optionally, these attributes are used to reconstruct the qp waveform, or patterns or features of the qp wave can be determined by using various pattern-recognition techniques. Some embodiments provide a system that uses software, embedded hardware or firmware to carry out the above-described method. Some embodiments use a computer-readable medium to store the data structure and/or instructions to execute the method.Type: GrantFiled: February 12, 2013Date of Patent: December 8, 2015Assignee: Vios Medical Singapore Pte. Ltd.Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20140289297Abstract: A system and method for representing quasi-periodic (“qp”) waveforms, for example, representing a plurality of limited decompositions of the qp waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. Data-structure attributes are created and used to reconstruct the qp waveform. Features of the qp wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g., lowest frequency “rate” component) that varies over time (by a factor of two to three) many overlapping filters use bandpass and overlap parameters that allow tracking the component's frequency version on changing quarter-phase basis.Type: ApplicationFiled: March 17, 2014Publication date: September 25, 2014Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Publication number: 20140278382Abstract: A system and method for representing quasi-periodic waveforms, for example, representing a plurality of limited decompositions of the quasi-periodic waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the quasi-periodic waveform. Data-structure attributes are created and used to reconstruct the quasi-periodic waveform. Features of the quasi-periodic wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g.Type: ApplicationFiled: March 17, 2014Publication date: September 18, 2014Inventors: Carlos A. Ricci, Vladimir V. Kovtun
-
Patent number: 8700138Abstract: Approaches for determining threshold values for one or more arrhythmia rate zones and/or the number of rate zones are described. A probability function for heart rate is determined using collected and measured heart rate values. One or more heart rate probability values are selected. Thresholds for arrhythmia rate zones are determined from the probability function based on the selected probability values. Determining the rate zone thresholds may involve determining a threshold for a lower rate limit and/or determining one or more tachyarrhythmia rate zone thresholds. The number of rate zones may also be determined based on the probability function.Type: GrantFiled: August 21, 2009Date of Patent: April 15, 2014Assignee: Cardiac Pacemakers, Inc.Inventors: Shelley M. Cazares, Carlos A. Ricci, Jaeho Kim
-
Patent number: 8532762Abstract: Cardiac arrhythmias are classified based on the morphology of the arrhythmia episode beats. Templates are formed using morphological features of the cardiac beats of the episode. The arrhythmia episode is classified as a monomorphic tachyarrhythmia or polymorphic tachyarrhythmia based on the one or more templates. The arrhythmia episode may be classified based on a number templates formed from the arrhythmia episode. The templates are formed by determining a measure of similarity between morphological features of a cardiac beat to a template. The similarities can be determined based on a pairing rule that determines which beat morphologies are compared. Selection of therapy for treating the arrhythmia episode may depend on the historical success of a therapy at mitigating previous arrhythmias of the same type as the arrhythmia episode.Type: GrantFiled: December 20, 2005Date of Patent: September 10, 2013Assignee: Cardiac Pacemakers, Inc.Inventors: Shelley Cazares, Carlos Ricci, Dan Li, Yayun Lin, Yi Zhang, Jaeho Kim, Joseph Bocek
-
Patent number: 8524646Abstract: A multi-compartment pouch comprising a first compartment and a second compartment, wherein, the first compartment comprises a solid composition, wherein the solid composition comprises; an oxygen bleach source; a bleach activator; a polycarboxylate polymer; and the second compartment comprises a liquid composition, wherein the liquid composition comprises; a low molecular weight solvent.Type: GrantFiled: May 26, 2011Date of Patent: September 3, 2013Assignee: The Procter & Gamble CompanyInventors: Carlo Ricci, Luca Sarcinelli