Patents by Inventor Carlos Enrique Diaz

Carlos Enrique Diaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170108291
    Abstract: A surface cooler includes a plate-like layer and a plurality of spaced-apart fins extending substantially perpendicular from an uppermost layer of the plate-like layer. The plurality of fins defining a plurality of air flow paths. The plurality of spaced-apart fins are configured to augment heat transfer of the surface cooler by increasing the turbulence levels of a fluid flowing through the airflow paths by promoting increased mixing with a resulting increase in the heat transfer coefficient of the surface cooler. A method of forming the surface cooler and an engine including the surface cooler.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 20, 2017
    Inventors: William Joseph Antel, Jr., Carlos Enrique Diaz, Jorge Alejandro Carretero Benignos
  • Patent number: 9599410
    Abstract: A surface cooler includes a plate-like layer and a plurality of spaced-apart fins extending substantially perpendicular from an uppermost layer of the plate-like layer. The plurality of fins defining a plurality of air flow paths. The plurality of spaced-apart fins are configured to augment heat transfer of the surface cooler by increasing the turbulence levels of a fluid flowing through the airflow paths by promoting increased mixing with a resulting increase in the heat transfer coefficient of the surface cooler. A method of forming the surface cooler and an engine including the surface cooler.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: March 21, 2017
    Assignee: General Electric Company
    Inventors: William Joseph Antel, Jr., Carlos Enrique Diaz, Jorge Carretero Benignos
  • Patent number: 9593594
    Abstract: A decongealing channel for use in a heat exchanger apparatus, including a supersaturated solution contained therein and an actuation component in fluid communication with a lubricating fluid coupled to the decongealing channel. The actuation component is responsive to a change in pressure exerted thereon by the lubricating fluid so as to actuate an exothermic response in the supersaturated solution. The heat exchanger apparatus is disposed in a bypass fan duct of an aircraft engine. The heat exchanger apparatus including a manifold portion, one or more flow through openings extending therethrough the manifold portion to define one or more flow through channels having contained therein the lubricating fluid. In addition, the manifold portion including one or more additional openings extending therethrough to define one or more decongealing channels. Further disclosed is an engine including the heat exchanger apparatus and a method of decongealing a lubricating fluid in the heat exchanger apparatus.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: March 14, 2017
    Assignee: General Electric Company
    Inventors: Carlos Enrique Diaz, William Dwight Gerstler, Michael Ralph Storage
  • Publication number: 20170009118
    Abstract: A method and apparatus for generating latent heat at low temperatures using an exothermic salt crystallization reaction in a supersaturated solution. The method and apparatus includes a supersaturated solution including a salt-based solute in a solvent. In an embodiment, the supersaturated solution is comprised of a salt-based solute of at least 50 wt. % sodium acetate trihydrate in a solvent of 70 vol. % ethylene glycol and 30 vol. % water. The supersaturated solution remains stable at a temperature below a melting point of the salt-based solute and is triggered to crystallize in a controlled manner to generate latent heat. The method and apparatus further including an actuation component, in fluid communication with a lubricating fluid, to initiate an exothermic crystallization response in the supersaturated solution. The supersaturated solution is suitable for use in a heat exchanger apparatus of an engine.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 12, 2017
    Inventors: Robert Edgar Colborn, William Dwight Gerstler, Carlos Enrique Diaz, Maria Rocco LaTorre
  • Publication number: 20160318619
    Abstract: In an aircraft including a gas turbine engine having a compressor including a compressor booster, a turbine, and a nacelle, a system for cooling compressor discharge air provided to the turbine to cool the turbine includes a heat exchanger provided in a nacelle compartment of the gas turbine engine configured to cool the compressor discharge air by exchanging heat from the compressor discharge air to a cooling fluid; and a cooling fluid circuit configured to circulate cooling fluid through the heat exchanger and a heat sink, wherein the heat sink is at least one of an inlet of the nacelle compartment, an inlet of the compressor booster, or outlet guide vanes of the gas turbine engine.
    Type: Application
    Filed: July 14, 2016
    Publication date: November 3, 2016
    Inventor: Carlos Enrique DIAZ
  • Patent number: 9429072
    Abstract: In an aircraft including a gas turbine engine, a system for cooling the gas turbine engine includes a tank provided in a wing of the aircraft, the tank being configured to store a cooling fluid supply; and a heat exchanger provided in the gas turbine engine configured to exchange heat from the compressor discharge air to the cooling fluid.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: August 30, 2016
    Assignee: General Electric Company
    Inventors: Carlos Enrique Diaz, Jorge Alejandro Carretero Benignos
  • Patent number: 9422063
    Abstract: In an aircraft including a gas turbine engine having a compressor including a compressor booster, a turbine, and a nacelle, a system for cooling compressor discharge air provided to the turbine to cool the turbine includes a heat exchanger provided in a nacelle compartment of the gas turbine engine configured to cool the compressor discharge air by exchanging heat from the compressor discharge air to a cooling fluid; and a cooling fluid circuit configured to circulate cooling fluid through the heat exchanger and a heat sink, wherein the heat sink is at least one of an inlet of the nacelle compartment, an inlet of the compressor booster, or outlet guide vanes of the gas turbine engine.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: August 23, 2016
    Assignee: General Electric Company
    Inventor: Carlos Enrique Diaz
  • Publication number: 20160131035
    Abstract: A heat exchanger apparatus including a surface cooler and a passive automatic retraction and extension system coupled to the surface cooler. The surface cooler having disposed therein one or more fluid flow channels configured for the passage therethrough of a heat transfer fluid to be cooled. The heat transfer fluid in a heat transfer relation on an interior side of said one or more fluid flow channels. The surface cooler including a plurality of fins projecting from an outer surface thereof. The passive automatic retraction and extension system including a thermal actuation component responsive to a change in temperature of at least one of the heat transfer fluid and a cooling fluid flow so as to actuate a change in a geometry of the surface cooler. Further disclosed is an engine including the heat exchanger apparatus.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: Carlos Enrique Diaz, William Dwight Gerstler, Michael Ralph Storage, Michael Thomas Kenworthy
  • Publication number: 20160090863
    Abstract: A decongealing channel for use in a heat exchanger apparatus, including a supersaturated solution contained therein and an actuation component in fluid communication with a lubricating fluid coupled to the decongealing channel. The actuation component is responsive to a change in pressure exerted thereon by the lubricating fluid so as to actuate an exothermic response in the supersaturated solution. The heat exchanger apparatus is disposed in a bypass fan duct of an aircraft engine. The heat exchanger apparatus including a manifold portion, one or more flow through openings extending therethrough the manifold portion to define one or more flow through channels having contained therein the lubricating fluid. In addition, the manifold portion including one or more additional openings extending therethrough to define one or more decongealing channels. Further disclosed is an engine including the heat exchanger apparatus and a method of decongealing a lubricating fluid in the heat exchanger apparatus.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: Carlos Enrique Diaz, William Dwight Gerstler, Michael Ralph Storage
  • Patent number: 8991191
    Abstract: A thermally actuated venting system includes a thermally actuated vent for opening a vent outlet in a gas turbine engine associated compartment with a passive thermal actuator located in the compartment based on a temperature of the compartment. Outlet may be located at or near a top of a core engine compartment, a fan compartment, or a pylon compartment. Actuator may be operably connected to a hinged door of vent for opening outlet. Actuator may be actuated by a phase change material disposed in a chamber and having a liquid state below a predetermined actuation temperature and a gaseous state above the predetermined actuation temperature. Actuator may include a thermal fuse for closing door during a fire. Thermal fuse may include at least a portion of piston rod or a cylinder wall of actuator being made of a fuse material having a melting point substantially above the predetermined actuation temperature.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Carlos Enrique Diaz, Daniel Jean-Louis Laborie, Stephen Dennis Geary
  • Publication number: 20150083367
    Abstract: An aviation bypass valve for use in a heat exchanger apparatus, including a shape memory alloy material. The heat exchanger apparatus further including an air-cooled oil cooler disposed in a bypass fan duct of an aircraft engine. The heat exchanger apparatus including a bypass valve in fluid communication with the air cooled oil cooler. The bypass valve including a valve body, a piston disposed in the valve body and moveable therein and an actuation component. The actuation component including a shape memory alloy. The actuation component responsive to a change in at least one of a thermal condition and a pressure exerted thereon so as to move the piston, thereby opening and closing the bypass valve.
    Type: Application
    Filed: December 30, 2013
    Publication date: March 26, 2015
    Applicant: General Electric Company
    Inventors: Carlos Enrique Diaz, William Dwight Gerstler, Michael Ralph Storage
  • Publication number: 20140352315
    Abstract: In an aircraft including a gas turbine engine having a compressor including a compressor booster, a turbine, and a nacelle, a system for cooling compressor discharge air provided to the turbine to cool the turbine includes a heat exchanger provided in a nacelle compartment of the gas turbine engine configured to cool the compressor discharge air by exchanging heat from the compressor discharge air to a cooling fluid; and a cooling fluid circuit configured to circulate cooling fluid through the heat exchanger and a heat sink, wherein the heat sink is at least one of an inlet of the nacelle compartment, an inlet of the compressor booster, or outlet guide vanes of the gas turbine engine.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventor: Carlos Enrique Diaz
  • Publication number: 20140345292
    Abstract: In an aircraft including a gas turbine engine, a system for cooling the gas turbine engine includes a tank provided in a wing of the aircraft, the tank being configured to store a cooling fluid supply; and a heat exchanger provided in the gas turbine engine configured to exchange heat from the compressor discharge air to the cooling fluid.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 27, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Carlos Enrique Diaz, Jorge Alejandro Carretero Benignos
  • Publication number: 20140027102
    Abstract: A surface cooler comprises a plate-like layer and a plurality of spaced-apart fins extending substantially perpendicular from an uppermost layer of the plate-like layer. The plurality of fins defining a plurality of air flow paths. The plurality of spaced-apart fins are configured to augment heat transfer of the surface cooler by increasing the turbulence levels of a fluid flowing through the airflow paths by promoting increased mixing with a resulting increase in the heat transfer coefficient of the surface cooler. A method of forming the surface cooler and an engine including the surface cooler.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Joseph ANTEL, JR., Carlos Enrique DIAZ, Jorge Carretero BENIGNOS
  • Publication number: 20110120075
    Abstract: A thermally actuated venting system includes a thermally actuated vent for opening a vent outlet in a gas turbine engine associated compartment with a passive thermal actuator located in the compartment based on a temperature of the compartment. Outlet may be located at or near a top of a core engine compartment, a fan compartment, or a pylon compartment. Actuator may be operably connected to a hinged door of vent for opening outlet. Actuator may be actuated by a phase change material disposed in a chamber and having a liquid state below a predetermined actuation temperature and a gaseous state above the predetermined actuation temperature. Actuator may include a thermal fuse for closing door during a fire. Thermal fuse may include at least a portion of piston rod or a cylinder wall of actuator being made of a fuse material having a melting point substantially above the predetermined actuation temperature.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventors: Carlos Enrique Diaz, Daniel Jean-Louis Laborie, Stephen Dennis Geary
  • Patent number: 7562532
    Abstract: A gas turbine group comprises a device, arranged in a suction-intake duct, for cooling a suction-intake airflow. The device is, for example, a device for injecting a liquid mass flow. The cooling device is activated automatically when a first limit temperature of the ambient air is overshot and is deactivated automatically when a second limit temperature is undershot. Stability of the automatic algorithm can be improved in that the second limit temperature can lie by a specific amount below the first limit temperature. In one embodiment, the limit temperatures are predetermined as a function of the position of an adjustable initial guide blade cascade.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: July 21, 2009
    Assignee: Alstom Technology Ltd
    Inventors: Carlos Enrique Diaz, Jürgen Gerhard Hoffmann, Andreas Ullrich