Patents by Inventor Carlos QUEREJETA MASAVEU

Carlos QUEREJETA MASAVEU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11080929
    Abstract: A system and a method for generating a 3D path from a source to a destination for an aerial vehicle is disclosed. An example system includes a managing unit to select a group of altitude layers including source and destination and generate a 2D horizontal scenario by identifying constraints to avoid at each altitude layer. The example system includes a path computing unit to determine common constraints for the altitude layers of the 2D horizontal scenario and compute a 2D lateral path avoiding the common constraints. The managing unit generates a 2D vertical scenario based on a projection of the previously computed 2D lateral path onto the constraints at the altitude layers. The path computing unit computes a 2D vertical path avoiding constraints of the 2D vertical scenario. The managing unit composes 3D waypoints of a conflict-free 3D path according to the 2D lateral path and 2D vertical path.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 3, 2021
    Assignee: The Boeing Company
    Inventors: Carlos Querejeta Masaveu, Ernesto Valls Hernandez, Francisco A. Navarro Felix
  • Patent number: 10930160
    Abstract: A computer-implemented method and a system for communicating high fidelity (HIFI) trajectory-related information of an aerial vehicle (AV) through standard aircraft trajectory conventions is disclosed. The method includes obtaining, from a first entity, a flight intent containing low fidelity (LOFI) trajectory-related information. The method also includes obtaining intent generation (IG) configuration parameters defining constraints, objectives, or a combination thereof, supplementary to the flight intent, the IG configuration parameters containing HIFI trajectory-related information for closing all degrees of freedom of motion of the AV and configuration. The method includes encoding, using standard aircraft trajectory conventions, the LOFI trajectory-related information from the flight intent and IG configuration parameters as a flight plan and user-defined fields available for information exchange. The method further includes sending, to a second entity, the flight plan and the user-defined fields.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: February 23, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Ernesto Valls Hernandez, Francisco A. Navarro Felix, Carlos Querejeta Masaveu, Jesus Cuadrado Sanchez
  • Patent number: 10656661
    Abstract: Methods and apparatus of tracking moving targets from air vehicles are disclosed. An example system includes an air vehicle including a moving target state estimator to determine at least one of an estimated speed or an estimated location of a moving target, a tracking infrastructure to determine a detectability zone surrounding the moving target based on at least one of the estimated speed or the estimated location of the moving target, and generate a guidance reference to command the air vehicle to move towards a reference location, the reference location based on the estimated location, and a flight control system to cause the air vehicle to follow the moving target outside of the detectability zone based on the guidance reference.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 19, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Carlos Querejeta Masaveu, Francisco A. Navarro Felix, Ernesto Valls Hernandez, Andrew Hayes
  • Patent number: 10467914
    Abstract: Methods and systems for autonomous generation of shortest lateral paths for unmanned aerial systems are described. An example system includes memory storing code and at least one processor to execute the code to cause the at least one processor to access an initial scenario including a source point, a target point, and a no flight zone, determine a computation time for identifying a lateral path for an aircraft to traverse that avoids the no flight zone, determine whether the determined computation time satisfies a threshold of a reference computation time, change the first number of vertices to a second number of vertices when the reference computation time is not satisfied, determine a buffer area surrounding the no flight zone, construct a visibility graph including lateral paths, and identify one of the lateral paths as being shorter than others of the lateral paths.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: November 5, 2019
    Assignee: The Boeing Company
    Inventors: Ernesto Valls Hernández, Francisco A. Navarro Félix, David Sánchez Tamargo, Carlos Querejeta Masaveu, Jesús Cuadrado Sánchez
  • Publication number: 20190108680
    Abstract: A system and a method for generating a 3D path from a source to a destination for an aerial vehicle is disclosed. An example system includes a managing unit to select a group of altitude layers including source and destination and generate a 2D horizontal scenario by identifying constraints to avoid at each altitude layer. The example system includes a path computing unit to determine common constraints for the altitude layers of the 2D horizontal scenario and compute a 2D lateral path avoiding the common constraints. The managing unit generates a 2D vertical scenario based on a projection of the previously computed 2D lateral path onto the constraints at the altitude layers. The path computing unit computes a 2D vertical path avoiding constraints of the 2D vertical scenario. The managing unit composes 3D waypoints of a conflict-free 3D path according to the 2D lateral path and 2D vertical path.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 11, 2019
    Inventors: Carlos Querejeta Masaveu, Ernesto Valls Hernandez, Francisco A. Navarro Felix
  • Publication number: 20190103029
    Abstract: A computer-implemented method and a system for communicating high fidelity (HIFI) trajectory-related information of an aerial vehicle (AV) through standard aircraft trajectory conventions is disclosed. The method includes obtaining, from a first entity, a flight intent containing low fidelity (LOFI) trajectory-related information. The method also includes obtaining intent generation (IG) configuration parameters defining constraints, objectives, or a combination thereof, supplementary to the flight intent, the IG configuration parameters containing HIFI trajectory-related information for closing all degrees of freedom of motion of the AV and configuration. The method includes encoding, using standard aircraft trajectory conventions, the LOFI trajectory-related information from the flight intent and IG configuration parameters as a flight plan and user-defined fields available for information exchange. The method further includes sending, to a second entity, the flight plan and the user-defined fields.
    Type: Application
    Filed: September 11, 2018
    Publication date: April 4, 2019
    Inventors: ERNESTO VALLS HERNANDEZ, FRANCISCO A. NAVARRO FELIX, CARLOS QUEREJETA MASAVEU, JESUS CUADRADO SANCHEZ
  • Patent number: 10223921
    Abstract: Example air vehicle navigation systems and methods are described herein that utilize a Common Runtime Aircraft Intent Data Structure (CRAIDS). An example method includes determining an initial condition of a flight of an air vehicle, determining a flight constraint, determining, using a common runtime aircraft intent data structure (CRAIDS), an aircraft trajectory based on the initial condition and the flight constraint, and performing the determined aircraft trajectory during the flight of the air vehicle.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: March 5, 2019
    Assignee: The Boeing Company
    Inventors: Francisco A. Navarro Felix, Carlos Querejeta Masaveu, Jesús Cuadrado Sanchez, Gary Viviani
  • Publication number: 20190004547
    Abstract: Methods and apparatus of tracking moving targets from air vehicles are disclosed. An example system includes an air vehicle including a moving target state estimator to determine at least one of an estimated speed or an estimated location of a moving target, a tracking infrastructure to determine a detectability zone surrounding the moving target based on at least one of the estimated speed or the estimated location of the moving target, and generate a guidance reference to command the air vehicle to move towards a reference location, the reference location based on the estimated location, and a flight control system to cause the air vehicle to follow the moving target outside of the detectability zone based on the guidance reference.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Inventors: Carlos QUEREJETA MASAVEU, Francisco A. NAVARRO FELIX, Ernesto VALLS HERNANDEZ, Andrew Hayes
  • Patent number: 10101750
    Abstract: Methods and apparatus of tracking moving targets from air vehicles are disclosed. An example method in response to an estimated speed and an estimated location of a moving target, determines a detectability zone surrounding the moving target; and causes an air vehicle to follow the moving target outside of the detectability zone.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: October 16, 2018
    Assignee: The Boeing Company
    Inventors: Carlos Querejeta Masaveu, Francisco A. Navarro Felix, Ernesto Valls Hernandez, Andrew Hayes
  • Publication number: 20180233050
    Abstract: Methods and systems for autonomous generation of shortest lateral paths for unmanned aerial systems are described. An example system includes memory storing code and at least one processor to execute the code to cause the at least one processor to access an initial scenario including a source point, a target point, and a no flight zone, determine a computation time for identifying a lateral path for an aircraft to traverse that avoids the no flight zone, determine whether the determined computation time satisfies a threshold of a reference computation time, change the first number of vertices to a second number of vertices when the reference computation time is not satisfied, determine a buffer area surrounding the no flight zone, construct a visibility graph including lateral paths, and identify one of the lateral paths as being shorter than others of the lateral paths.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 16, 2018
    Inventors: Ernesto VALLS HERNÁNDEZ, Francisco A. NAVARRO FÉLIX, David SÁNCHEZ TAMARGO, Carlos QUEREJETA MASAVEU, Jesús CUADRADO SÁNCHEZ
  • Patent number: 10032383
    Abstract: Methods and systems for autonomous generation of shortest lateral paths for unmanned aerial systems are described. An example method includes defining an area between a source point and a target point; identifying a first no flight zone within the area; identifying a second no flight zone outside of the area; estimating a first computation time to determine a first lateral path between the source point and the target point, the estimating to consider the first no flight zone, the estimating not to consider the second no flight zone; comparing the first computation time to a reference computation time; in response to the first computation time not satisfying a threshold of the reference computation time, modifying the first no flight zone to be a third no flight zone; and estimating a second computation time to determine a second lateral path between the source point and the target point, the estimating to consider the third no flight zone.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 24, 2018
    Assignee: The Boeing Company
    Inventors: Ernesto Valls Hernández, Francisco A. Navarro Félix, David Sánchez Tamargo, Carlos Querejeta Masaveu, Jesús Cuadrado Sánchez
  • Publication number: 20170116863
    Abstract: Methods and systems for autonomous generation of shortest lateral paths for unmanned aerial systems are described. An example method includes defining an area between a source point and a target point; identifying a first no flight zone within the area; identifying a second no flight zone outside of the area; estimating a first computation time to determine a first lateral path between the source point and the target point, the estimating to consider the first no flight zone, the estimating not to consider the second no flight zone; comparing the first computation time to a reference computation time; in response to the first computation time not satisfying a threshold of the reference computation time, modifying the first no flight zone to be a third no flight zone; and estimating a second computation time to determine a second lateral path between the source point and the target point, the estimating to consider the third no flight zone.
    Type: Application
    Filed: July 8, 2016
    Publication date: April 27, 2017
    Inventors: Ernesto VALLS HERNÁNDEZ, Francisco A. NAVARRO FÉLIX, David SÁNCHEZ TAMARGO, Carlos QUEREJETA MASAVEU, Jesús CUADRADO SÁNCHEZ
  • Publication number: 20170061804
    Abstract: Example air vehicle navigation systems and methods are described herein that utilize a Common Runtime Aircraft Intent Data Structure (CRAIDS). An example method includes determining an initial condition of a flight of an air vehicle, determining a flight constraint, determining, using a common runtime aircraft intent data structure (CRAIDS), an aircraft trajectory based on the initial condition and the flight constraint, and performing the determined aircraft trajectory during the flight of the air vehicle.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 2, 2017
    Inventors: Francisco A. Navarro Felix, Carlos Querejeta Masaveu, Jesús Cuadrado Sanchez, Gary Viviani
  • Publication number: 20170038781
    Abstract: Methods and apparatus of tracking moving targets from air vehicles are disclosed. An example method in response to an estimated speed and an estimated location of a moving target, determines a detectability zone surrounding the moving target; and causes an air vehicle to follow the moving target outside of the detectability zone.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 9, 2017
    Inventors: Carlos QUEREJETA MASAVEU, Francisco A. NAVARRO FELIX, Ernesto VALLS HERNANDEZ, Andrew Hayes