Patents by Inventor Carlos Ricci

Carlos Ricci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8532762
    Abstract: Cardiac arrhythmias are classified based on the morphology of the arrhythmia episode beats. Templates are formed using morphological features of the cardiac beats of the episode. The arrhythmia episode is classified as a monomorphic tachyarrhythmia or polymorphic tachyarrhythmia based on the one or more templates. The arrhythmia episode may be classified based on a number templates formed from the arrhythmia episode. The templates are formed by determining a measure of similarity between morphological features of a cardiac beat to a template. The similarities can be determined based on a pairing rule that determines which beat morphologies are compared. Selection of therapy for treating the arrhythmia episode may depend on the historical success of a therapy at mitigating previous arrhythmias of the same type as the arrhythmia episode.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: September 10, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shelley Cazares, Carlos Ricci, Dan Li, Yayun Lin, Yi Zhang, Jaeho Kim, Joseph Bocek
  • Patent number: 8524646
    Abstract: A multi-compartment pouch comprising a first compartment and a second compartment, wherein, the first compartment comprises a solid composition, wherein the solid composition comprises; an oxygen bleach source; a bleach activator; a polycarboxylate polymer; and the second compartment comprises a liquid composition, wherein the liquid composition comprises; a low molecular weight solvent.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: September 3, 2013
    Assignee: The Procter & Gamble Company
    Inventors: Carlo Ricci, Luca Sarcinelli
  • Patent number: 8409107
    Abstract: Estimating a frequency of a sampled cardiac rhythm signal and classifying the rhythm. The received signal is sampled and transformed into a curvature series. A lobe in the curvature series corresponds to a characteristic point in the sampled series. Characteristic points are selected based on a time of a lobe in the curvature series and, in one embodiment, an amplitude of the signal at the time of the lobe. A frequency of the sampled series is estimated by autocorrelating a function of the series of the characteristic points. In one embodiment, the function is a time difference function. The rhythm is classified by plotting the timewise proximity of characteristic points derived from an atrial signal with characteristic points derived from a ventricular signal. Regions of the plot are associated with a particular rhythm and the grouping of the data corresponds to the classification.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: April 2, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Carlos Ricci
  • Patent number: 8306615
    Abstract: An implantable cardiac rhythm management (CRM) device delivers a chronic therapy while detecting an ischemic state. When the ischemic state indicates the occurrence of an ischemic event, the implantable CRM device delivers a post-ischemia therapy. The post-ischemia therapy and the chronic therapy are adjusted using feedback control with the ischemic state and parameters indicative of the effectiveness of the post-ischemic therapy and the effectiveness of the chronic therapy as inputs.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: November 6, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Marina V. Brockway, Joseph M. Pastore, Yi Zhang, Carlos Ricci, Allan C. Shuros, Rodney W. Salo
  • Publication number: 20110303576
    Abstract: A multi-compartment pouch comprising a first compartment and a second compartment, wherein, the first compartment comprises a solid composition, wherein the solid composition comprises; an oxygen bleach source; a bleach activator; a polycarboxylate polymer; and the second compartment comprises a liquid composition, wherein the liquid composition comprises; a low molecular weight solvent.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 15, 2011
    Inventors: Carlo Ricci, Luca Sarcinelli
  • Patent number: 8050755
    Abstract: An implantable cardiac device detects a patient therapy request originating from external to the implantable device. A shock therapy delay period is timed in response to the detection of the patient therapy request. Atrial shock therapy is provided to the patient after expiration of the shock therapy delay period (if the presence of an ongoing atrial arrhythmia is detected). The patient therapy request may be provided by a patient activator including a magnet for operating a reed switch in the implanted device to provide the request. A patient activator including an input and receiver/transmitter circuitry may be employed to request the immediate providing of atrial shock therapy, and/or to set the duration the shock therapy delay period. By allowing specific delays to therapy after a therapy request, a patient can prepare for the requested therapy and thereby mitigate therapy discomfort.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 1, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Victor T. Chen, Gary T. Seim, Carlos Ricci, Michael L. Favet, Hal M. Propp
  • Patent number: 7983744
    Abstract: A system for implementing a cardiac device having adaptive treatment therapies utilizing a neural network based learning engine is disclosed. The system includes an implantable cardiac device module and an external data processing system for specifying the operating characteristics of the cardiac device module. Both the cardiac device module and the external processing system possess an artificial neural network to specify the operation of the cardiac device module as it provides adaptive treatment therapies. The external data processing system includes a complete neural network module that trains and validates the operation of the neural network to match the optimal treatment options with a received set of collected patient data. A runtime neural network module that provides real time operation of the neural network using collected patient data is located within the cardiac device module. The cardiac device module and the external processing module are connected via a communication link.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: July 19, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Carlos Ricci, Surekha Palreddy
  • Publication number: 20110095230
    Abstract: The present invention refers in a first aspect thereof to a new method for information storage and retrieval by means of rare earth doped orthosilicates having a trap density comprised between 1015 and 1020 traps/cm3 and to devices using such a new method for storing and retrieving information.
    Type: Application
    Filed: March 24, 2009
    Publication date: April 28, 2011
    Applicant: UNIVERSITÀ DEGLI STUDI DI CAGLIARI
    Inventors: Alberto Anedda, Pier Carlo Ricci, Daniele Chiriu
  • Publication number: 20100305645
    Abstract: Estimating a frequency of a sampled cardiac rhythm signal and classifying the rhythm. The received signal is sampled and transformed into a curvature series. A lobe in the curvature series corresponds to a characteristic point in the sampled series. Characteristic points are selected based on a time of a lobe in the curvature series and, in one embodiment, an amplitude of the signal at the time of the lobe. A frequency of the sampled series is estimated by autocorrelating a function of the series of the characteristic points. In one embodiment, the function is a time difference function. The rhythm is classified by plotting the timewise proximity of characteristic points derived from an atrial signal with characteristic points derived from a ventricular signal. Regions of the plot are associated with a particular rhythm and the grouping of the data corresponds to the classification.
    Type: Application
    Filed: August 11, 2010
    Publication date: December 2, 2010
    Inventors: Robert J. Sweeney, Carlos Ricci
  • Publication number: 20100268293
    Abstract: An implantable cardiac device detects a patient therapy request originating from external to the implantable device. A shock therapy delay period is timed in response to the detection of the patient therapy request. Atrial shock therapy is provided to the patient after expiration of the shock therapy delay period (if the presence of an ongoing atrial arrhythmia is detected). The patient therapy request may be provided by a patient activator including a magnet for operating a reed switch in the implanted device to provide the request. A patient activator including an input and receiver/transmitter circuitry may be employed to request the immediate providing of atrial shock therapy, and/or to set the duration the shock therapy delay period. By allowing specific delays to therapy after a therapy request, a patient can prepare for the requested therapy and thereby mitigate therapy discomfort.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Inventors: Victor T. Chen, Gary T. Seim, Carlos Ricci, Michael L. Favet, Hal Propp
  • Patent number: 7792571
    Abstract: Estimating a frequency of a sampled cardiac rhythm signal and classifying the rhythm. The received signal is sampled and transformed into a curvature series. A lobe in the curvature series corresponds to a characteristic point in the sampled series. Characteristic points are selected based on a time of a lobe in the curvature series and, in one embodiment, an amplitude of the signal at the time of the lobe. A frequency of the sampled series is estimated by autocorrelating a function of the series of the characteristic points. In one embodiment, the function is a time difference function. The rhythm is classified by plotting the timewise proximity of characteristic points derived from an atrial signal with characteristic points derived from a ventricular signal. Regions of the plot are associated with a particular rhythm and the grouping of the data corresponds to the classification.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: September 7, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Carlos Ricci
  • Publication number: 20100190677
    Abstract: Laundry multi-compartment pouch made from a water-soluble film and having at least two compartments. The pouch of the present invention comprises a composition containing a solid component and a liquid component, wherein the solid component contains a peroxide source and a mixture of specific polymer.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 29, 2010
    Applicant: The Procter & Gamble Company
    Inventors: Andrea Esposito, Vincenzo Guida, Carlo Ricci, Luca Sarcinelli
  • Patent number: 7761152
    Abstract: An implantable cardiac device detects a patient therapy request originating from external to the implantable device. A shock therapy delay period is timed in response to the detection of the patient therapy request. Atrial shock therapy is provided to the patient after expiration of the shock therapy delay period (if the presence of an ongoing atrial arrhythmia is detected). The patient therapy request may be provided by a patient activator including a magnet for operating a reed switch in the implanted device to provide the request. A patient activator including an input and receiver/transmitter circuitry may be employed to request the immediate providing of atrial shock therapy, and/or to set the duration the shock therapy delay period. By allowing specific delays to therapy after a therapy request, a patient can prepare for the requested therapy and thereby mitigate therapy discomfort.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: July 20, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Victor T. Chen, Gary T. Seim, Carlos Ricci, Michael L. Favet, Hal Propp
  • Publication number: 20100121209
    Abstract: Cardiac systems and methods provide for discriminating between supraventricular tachyarrhythmia and ventricular tachyarrhythmia based on a determination that the patient's supraventricular rhythm exhibits rate dependency. One approach involves determining if a patient's supraventricular rhythm exhibits rate dependent morphology. If the patient's supraventricular rhythm is determined to exhibit rate dependent morphology, an implantable device classifies a detected tachyarrhythmia episode based on one or more templates selected from a plurality of rate-indexed templates stored in the device. Determining if the supraventricular rhythm exhibits rate dependent morphology may also include determining one or more rates at which the rate dependent morphology occurs.
    Type: Application
    Filed: January 12, 2010
    Publication date: May 13, 2010
    Inventors: Shelley Cazares, Jaeho Kim, Yayun Lin, Carlos Ricci
  • Publication number: 20100121391
    Abstract: An implantable cardiac rhythm management (CRM) device delivers a chronic therapy while detecting an ischemic state. When the ischemic state indicates the occurrence of an ischemic event, the implantable CRM device delivers a post-ischemia therapy. The post-ischemia therapy and the chronic therapy are adjusted using feedback control with the ischemic state and parameters indicative of the effectiveness of the post-ischemic therapy and the effectiveness of the chronic therapy as inputs.
    Type: Application
    Filed: January 18, 2010
    Publication date: May 13, 2010
    Inventors: Marina Brockway, Joseph M. Pastore, Yi Zhang, Carlos Ricci, Allan Shuros, Rodney W. Salo
  • Patent number: 7668594
    Abstract: An implantable cardiac rhythm management (CRM) device delivers a chronic therapy while detecting an ischemic state. When the ischemic state indicates the occurrence of an ischemic event, the implantable CRM device delivers a post-ischemia therapy. The post-ischemia therapy and the chronic therapy are adjusted using feedback control with the ischemic state and parameters indicative of the effectiveness of the post-ischemic therapy and the effectiveness of the chronic therapy as inputs.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: February 23, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Marina Brockway, Joseph M. Pastore, Yi Zhang, Carlos Ricci, Allan Shuros, Rodney W. Salo
  • Patent number: 7653431
    Abstract: Cardiac systems and methods provide for discriminating between supraventricular tachyarrhythmia and ventricular tachyarrhythmia based on a determination that the patient's supraventricular rhythm exhibits rate dependency. One approach involves determining if a patient's supraventricular rhythm exhibits rate dependent morphology. If the patient's supraventricular rhythm is determined to exhibit rate dependent morphology, an implantable device classifies a detected tachyarrhythmia episode based on one or more templates selected from a plurality of rate-indexed templates stored in the device. Determining if the supraventricular rhythm exhibits rate dependent morphology may also include determining one or more rates at which the rate dependent morphology occurs.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: January 26, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shelley Cazares, Jaeho Kim, Yayun Lin, Carlos Ricci
  • Publication number: 20090093731
    Abstract: A system, method, or device determines whether noise is present on a sampled and/or digitized sensed intrinsic cardiac signal based on a moving count of turning/inflection points of the signal. If noise is detected, the manner in which the cardiac signal is acquired, or the manner in which the device operates in response to the acquired cardiac signal (or both) is altered to reduce the risk of erroneously detecting noise as a heart depolarization and, therefore, inappropriately triggering or withholding therapy.
    Type: Application
    Filed: December 11, 2008
    Publication date: April 9, 2009
    Inventors: Surekha Palreddy, Carlos Ricci
  • Patent number: 7467009
    Abstract: A system, method, or device determines whether noise is present on a sampled and/or digitized sensed intrinsic cardiac signal based on a moving count of turning/inflection points of the signal. If noise is detected, the manner in which the cardiac signal is acquired, or the manner in which the device operates in response to the acquired cardiac signal (or both) is altered to reduce the risk of erroneously detecting noise as a heart depolarization and, therefore, inappropriately triggering or withholding therapy.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: December 16, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Surekha Palreddy, Carlos Ricci
  • Publication number: 20070244402
    Abstract: A physiological signal monitoring and analysis system including an implantable medical device and a signal processor. The implantable medical device is configured to monitor and record sample segments of at least one physiological signal of a patient at time separated recording intervals over a time period. The signal processor configured to measure values of at least one selected characteristic of the at least one physiological signal from the recorded sample segments, to determine trend information representing a trend in the at least one selected characteristic based on the measured values, and to assess a risk of a physiological event to the patient based on the trend information.
    Type: Application
    Filed: February 20, 2007
    Publication date: October 18, 2007
    Inventors: Brian Brockway, Vladimir Kovtun, Carlos Ricci, John Arnold, Keith Jasperson, Kathy Sherwood, Scott Mazar