Patents by Inventor Carlton E. Ash

Carlton E. Ash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11325997
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Publication number: 20220002449
    Abstract: Silica composites and supported chromium catalysts having a bulk density of 0.08 to 0.4 g/mL, a total pore volume of 0.4 to 2.5 mL/g, a BET surface area of 175 to 375 m2/g, and a peak pore diameter of 10 to 80 nm are disclosed herein. These silica composites and supported chromium catalysts can be formed by combining two silica components. The first silica component can be irregularly shaped, such as fumed silica, and the second silica component can be a colloidal silica or a silicon-containing compound, and the second silica component can act as a glue to bind the silica composite together.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Max P. McDaniel, Kathy S. Clear, Carlton E. Ash, Stephen L. Kelly, Amanda B. Allemand
  • Patent number: 11186656
    Abstract: Silica composites and supported chromium catalysts having a bulk density of 0.08 to 0.4 g/mL, a total pore volume of 0.4 to 2.5 mL/g, a BET surface area of 175 to 375 m2/g, and a peak pore diameter of 10 to 80 nm are disclosed herein. These silica composites and supported chromium catalysts can be formed by combining two silica components. The first silica component can be irregularly shaped, such as fumed silica, and the second silica component can be a colloidal silica or a silicon-containing compound, and the second silica component can act as a glue to bind the silica composite together.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: November 30, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Carlton E. Ash, Stephen L. Kelly, Amanda B. Allemand
  • Patent number: 11124586
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: September 21, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Publication number: 20210261697
    Abstract: Disclosed are metallocene compounds, catalyst compositions comprising a metallocene compound, processes for polymerizing olefins, methods for making catalyst compositions, olefin polymers and articles made from olefin polymers. In an aspect, a metallocene compounds contain a fluorenyl ligand and a cyclopentadienyl ligand which are bridged by a linking group, in which the metallocene is characterized by [1] the cyclopentadienyl ligand being substituted with a C2-C18 heterohydrocarbyl group having an oxygen atom positioned 5 atoms distance or less from the cyclopentadienyl ligand and [2] the linking group having a pendant C3-C12 alkenyl group having a terminal C?C double bond. It has been discovered that a catalyst composition comprising a metallocene compound having these features can produce polyethylene having a low melt index in the absence of a second metallocene.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 26, 2021
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Errun Ding, Qing Yang, Carlton E. Ash, Randall S. Muninger, Jim B. Askew, Zhou Chen
  • Publication number: 20200369796
    Abstract: Silica composites and supported chromium catalysts having a bulk density of 0.08 to 0.4 g/mL, a total pore volume of 0.4 to 2.5 mL/g, a BET surface area of 175 to 375 m2/g, and a peak pore diameter of 10 to 80 nm are disclosed herein. These silica composites and supported chromium catalysts can be formed by combining two silica components. The first silica component can be irregularly shaped, such as fumed silica, and the second silica component can be a colloidal silica or a silicon-containing compound, and the second silica component can act as a glue to bind the silica composite together.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Inventors: Max P. McDaniel, Kathy S. Clear, Carlton E. Ash, Stephen L. Kelly, Amanda B. Allemand
  • Patent number: 10040914
    Abstract: Compositions and methods for forming epoxy resin are provided, and compositions and methods for forming epoxy resin composites are provided. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component comprising a glycidyl ether of an aryl substituted phenolic compound, a curing agent component, and a substrate. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component and a curing agent component comprising an aryl substituted phenolic compound, and a substrate.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: August 7, 2018
    Assignee: HEXION INC.
    Inventors: Larry Steven Corley, Robert Dale Farris, Carlton E. Ash
  • Patent number: 9920161
    Abstract: Compositions and methods for forming epoxy resin systems are provided. In one embodiment, a composition is provided for an epoxy resin system including a reaction product of an epoxy resin component and a curing agent component comprising a first amine compound having the formula R1R2R3N, wherein R1 and R2 are independently an aliphatic or alicyclic organic functional group and R3 is an alkyl group, having a backbone of 2-18 carbon atoms, and a second amine compound having one or more primary or secondary amine groups, with the stoichiometic ratio of —NH bonds of the second amine compound to the epoxy groups of the epoxy resin component being from 1:20 to about 21:20. The composition may be used to form composites, such as used in commercial wind turbine blade manufacturing.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: March 20, 2018
    Assignee: Hexion Inc.
    Inventors: Larry Steven Corley, Robert D. Farris, Carlton E. Ash
  • Patent number: 9840588
    Abstract: Disclosed are epoxy resins exhibiting a highly favorable combination of tensile strength and elongation with respect to prior art epoxy systems. The elastomeric epoxy resin systems of the invention are prepared utilizing a curing agent containing at least one monoprimary amine, and are particularly useful in applications such as, for example, castings, potting, composites, crack sealing, coatings, adhesives, roofing materials, flooring or reinforced membranes.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 12, 2017
    Assignee: HEXION INC.
    Inventors: Larry Steven Corley, Carlton E. Ash
  • Publication number: 20170335050
    Abstract: Compositions and methods for forming epoxy resin systems are provided. In one embodiment, a composition is provided for an epoxy resin system including a reaction product of an epoxy resin component and a curing agent component comprising a first amine compound having the formula R1R2R3N, wherein R1 and R2 are independently an aliphatic or alicyclic organic functional group and R3 is an alkyl group, having a backbone of 2-18 carbon atoms, and a second amine compound having one or more primary or secondary amine groups, with the stoichiometic ratio of —NH bonds of the second amine compound to the epoxy groups of the epoxy resin component being from 1:20 to about 21:20. The composition may be used to form composites, such as used in commercial wind turbine blade manufacturing.
    Type: Application
    Filed: August 10, 2017
    Publication date: November 23, 2017
    Inventors: Larry Steven CORLEY, Robert D. Farris, Carlton E. Ash
  • Patent number: 9751973
    Abstract: Compositions and methods for forming epoxy resin systems are provided. In one embodiment, a composition is provided for an epoxy resin system including a reaction product of an epoxy resin component and a curing agent component comprising a first amine compound having the formula R1R2R3N, wherein R1 and R2 are independently an aliphatic or alicyclic organic functional group and R3 is an alkyl group, having a backbone of 2-18 carbon atoms, and a second amine compound having one or more primary or secondary amine groups, with the stoichiometic ratio of —NH bonds of the second amine compound to the epoxy groups of the epoxy resin component being from 1:20 to about 21:20. The composition may be used to form composites, such as used in commercial wind turbine blade manufacturing.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: September 5, 2017
    Assignee: HEXION INC.
    Inventors: Larry Steven Corley, Robert D. Farris, Carlton E. Ash
  • Publication number: 20170051119
    Abstract: Compositions and methods for forming epoxy resin are provided, and compositions and methods for forming epoxy resin composites are provided. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component comprising a glycidyl ether of an aryl substituted phenolic compound, a curing agent component, and a substrate. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component and a curing agent component comprising an aryl substituted phenolic compound, and a substrate.
    Type: Application
    Filed: October 27, 2016
    Publication date: February 23, 2017
    Inventors: Larry Steven CORLEY, Robert Dale Farris, Carlton E. Ash
  • Patent number: 9499692
    Abstract: Compositions and methods for forming epoxy resin are provided, and compositions and methods for forming epoxy resin composites are provided. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component comprising a glycidyl ether of an aryl substituted phenolic compound, a curing agent component, and a substrate. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component and a curing agent component comprising an aryl substituted phenolic compound, and a substrate.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: November 22, 2016
    Assignee: HEXION INC.
    Inventors: Larry Steven Corley, Robert Dale Farris, Carlton E. Ash
  • Publication number: 20160244552
    Abstract: Compositions and methods for forming epoxy resin systems are provided. In one embodiment, a composition is provided for an epoxy resin system including a reaction product of an epoxy resin component and a curing agent component comprising a first amine compound having the formula R1R2R3N, wherein R1 and R2 are independently an aliphatic or alicyclic organic functional group and R3 is an alkyl group, having a backbone of 2-18 carbon atoms, and a second amine compound having one or more primary or secondary amine groups, with the stoichiometic ratio of —NH bonds of the second amine compound to the epoxy groups of the epoxy resin component being from 1:20 to about 21:20. The composition may be used to form composites, such as used in commercial wind turbine blade manufacturing.
    Type: Application
    Filed: March 3, 2016
    Publication date: August 25, 2016
    Applicant: Hexlon Inc.
    Inventors: Larry Steven CORLEY, Robert D. Farris, Carlton E. Ash
  • Publication number: 20140336339
    Abstract: Compositions and methods for forming epoxy resin are provided, and compositions and methods for forming epoxy resin composites are provided. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component comprising a glycidyl ether of an aryl substituted phenolic compound, a curing agent component, and a substrate. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component and a curing agent component comprising an aryl substituted phenolic compound, and a substrate.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 13, 2014
    Applicant: Momentive Specialty Chemicals Inc.
    Inventors: Larry Steven CORLEY, Robert Dale FARRIS, Carlton E. ASH
  • Patent number: 8796391
    Abstract: Disclosed are epoxy resins exhibiting a highly favorable combination of tensile strength and elongation with respect to prior art epoxy systems. The elastomeric epoxy resin systems of the invention are prepared utilizing a curing agent containing at least one monoprimary amine, and are particularly useful in applications such as, for example, castings, potting, composites, crack sealing, coatings, adhesives, roofing materials, flooring or reinforced membranes.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: August 5, 2014
    Assignee: Momentive Specialty Chemicals Inc.
    Inventors: Larry Steven Corley, Carlton E. Ash
  • Patent number: 8791195
    Abstract: Disclosed is a toughened film forming agent for use in a fiber sizing, a finish coating or a binder composition, where the toughened film forming agent includes a film forming polymer and a toughening agent both dispersed in water. The toughening agent may be core shell polymers, rubber, thermoplastic materials, nanomaterials, nanofibers, including any combination or subset thereof. The film forming polymer may be epoxy resins, polyurethane resins, epoxy-polyurethane resins, polyester resins, epoxy-polyester resins, polyvinylacetate resins, polypropylene resins, including any combination or subset thereof.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 29, 2014
    Assignee: Momentive Specialty Chemicals Inc.
    Inventors: Walter Henry Christiansen, III, Carlton E. Ash, Paul W. Langemeier
  • Publication number: 20110319564
    Abstract: Compositions and methods for forming epoxy resin systems are provided. In one embodiment, a composition is provided for an epoxy resin system including a reaction product of an epoxy resin component and a curing agent component comprising a first amine compound having the formula R1R2R3N, wherein R1 and R2 are independently an aliphatic or alicyclic organic functional group and R3 is an alkyl group, having a backbone of 2-18 carbon atoms, and a second amine compound having one or more primary or secondary amine groups, with the stoichiometic ratio of —NH bonds of the second amine compound to the epoxy groups of the epoxy resin component being from 1:20 to about 21:20. The composition may be used to form composites, such as used in commercial wind turbine blade manufacturing.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 29, 2011
    Inventors: Larry Steven Corley, Robert Dale Farris, Carlton E. Ash
  • Publication number: 20110152448
    Abstract: Disclosed are epoxy resins exhibiting a highly favorable combination of tensile strength and elongation with respect to prior art epoxy systems. The elastomeric epoxy resin systems of the invention are prepared utilizing a curing agent containing at least one monoprimary amine, and are particularly useful in applications such as, for example, castings, potting, composites, crack sealing, coatings, adhesives, roofing materials, flooring or reinforced membranes.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Larry Steven Corley, Carlton E. Ash
  • Publication number: 20110152468
    Abstract: Disclosed are epoxy resins exhibiting a highly favorable combination of tensile strength and elongation with respect to prior art epoxy systems. The elastomeric epoxy resin systems of the invention are prepared utilizing a curing agent containing at least one monoprimary amine, and are particularly useful in applications such as, for example, castings, potting, composites, crack sealing, coatings, adhesives, roofing materials, flooring or reinforced membranes.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Larry Steven Corley, Carlton E. Ash