Patents by Inventor Carmel Hayes

Carmel Hayes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940518
    Abstract: The disclosure relates to a technique for providing an image of diagnostically relevant area of a jaw region of a patient by means of a magnetic resonance apparatus by capturing information about the jaw region of the patient, which comprises at least one reference to a position and/or an extent of the diagnostically relevant area of the jaw region. The technique also includes adjusting a parameter of a magnetic resonance measurement as a function of the captured information about the jaw region of the patient, carrying out the magnetic resonance measurement with the adjusted parameter, capturing image data of the jaw region of the patient, reconstructing an image of the diagnostically relevant area of the jaw region as a function of the captured image data, and providing the image of the diagnostically relevant area of the jaw region of the patient.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: March 26, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Andreas Greiser, Carmel Hayes, Mario Zeller
  • Publication number: 20240090791
    Abstract: In a method for masking one or more regions surrounding an anatomical region of interest for each of one or more MRI images obtained from MRI imaging data, the one or more regions surrounding the anatomical region of interest are masked based on control data determined for identifying the anatomical region of interest in the MRI imaging data. The MRI imaging data may be obtained during an MRI exam of a patient for a measurement volume including the anatomical region of interest. The anatomical region of interest may be ascertained before performing the MRI exam.
    Type: Application
    Filed: September 18, 2023
    Publication date: March 21, 2024
    Applicants: Siemens Healthcare GmbH, Dentsply Sirona Inc., SIRONA Dental Systems GmbH
    Inventors: Andreas Greiser, Johannes Ulrici, Kim Burzan, Gunnar Krüger, Lars Lauer, Daniel Rinck, Carmel Hayes
  • Publication number: 20240008820
    Abstract: In a method and system for reducing motion artifacts in magnetic resonance image data acquired from a facial region of a patient, the patient is positioned in an imaging region of a magnetic resonance imaging device configured to perform a magnetic resonance measurement of the facial region of the patient, the magnetic resonance measurement is performed to acquire magnetic resonance image data of the facial region of the patient, and a motion correction technique is employed exploiting an accessibility to the facial region of the patient during the magnetic resonance measurement. The motion correction technique advantageously reduces an influence of a patient motion on the magnetic resonance image data.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 11, 2024
    Applicant: Siemens Healthcare GmbH
    Inventors: David Grodzki, Mario Zeller, Carmel Hayes, René Kartmann
  • Patent number: 11800978
    Abstract: A computer-implemented method of performing deep learning based isocenter positioning includes acquiring a plurality of slabs covering an anatomical area of interest that comprises a patient's heart. For each slab, one or more deep learning models are used to determine a likelihood score for the slab indicating a probability that the slab includes at least a portion of the patient's heart. A center position of the patient's heart may then be determined based on the likelihood scores determined for the plurality of slabs.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: October 31, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Xiaoguang Lu, Carmel Hayes
  • Patent number: 11474173
    Abstract: A magnetic resonance apparatus, for acquiring magnetic resonance data from a person who is asleep, includes a person support apparatus to provide a sleeping place; an acquisition arrangement including a radiofrequency coil arrangement for transmitting excitation pulses and for receiving magnetic resonance signals; and a controller, designed to operate the acquisition arrangement according to a magnetic resonance sequence for acquiring a magnetic resonance dataset from a region under examination of the person. The magnetic resonance apparatus includes a main magnetic field of strength less than 20 mT, in particular less than 10 mT, and the controller includes an acquisition unit for acquiring a magnetic resonance dataset via a prolonged magnetic resonance sequence having a total acquisition duration of more than one hour.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 18, 2022
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Markus Vester, Carmel Hayes, Stefan Popescu, Mathias Blasche, Matthias Gebhardt
  • Publication number: 20220308144
    Abstract: The disclosure relates to a technique for providing an image of diagnostically relevant area of a jaw region of a patient by means of a magnetic resonance apparatus by capturing information about the jaw region of the patient, which comprises at least one reference to a position and/or an extent of the diagnostically relevant area of the jaw region. The technique also includes adjusting a parameter of a magnetic resonance measurement as a function of the captured information about the jaw region of the patient, carrying out the magnetic resonance measurement with the adjusted parameter, capturing image data of the jaw region of the patient, reconstructing an image of the diagnostically relevant area of the jaw region as a function of the captured image data, and providing the image of the diagnostically relevant area of the jaw region of the patient.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 29, 2022
    Inventors: Andreas Greiser, Carmel Hayes, Mario Zeller
  • Publication number: 20210208219
    Abstract: A magnetic resonance apparatus, for acquiring magnetic resonance data from a person who is asleep, includes a person support apparatus to provide a sleeping place; an acquisition arrangement including a radiofrequency coil arrangement for transmitting excitation pulses and for receiving magnetic resonance signals; and a controller, designed to operate the acquisition arrangement according to a magnetic resonance sequence for acquiring a magnetic resonance dataset from a region under examination of the person. The magnetic resonance apparatus includes a main magnetic field of strength less than 20 mT, in particular less than 10 mT, and the controller includes an acquisition unit for acquiring a magnetic resonance dataset via a prolonged magnetic resonance sequence having a total acquisition duration of more than one hour.
    Type: Application
    Filed: December 22, 2020
    Publication date: July 8, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Markus VESTER, Carmel HAYES, Stefan POPESCU, Mathias BLASCHE, Matthias GEBHARDT
  • Publication number: 20210156945
    Abstract: In a method and system for reducing motion artifacts in magnetic resonance image data acquired from a facial region of a patient, the patient is positioned in an imaging region of a magnetic resonance imaging device configured to perform a magnetic resonance measurement of the facial region of the patient, the magnetic resonance measurement is performed to acquire magnetic resonance image data of the facial region of the patient, and a motion correction technique is employed exploiting an accessibility to the facial region of the patient during the magnetic resonance measurement. The motion correction technique advantageously reduces an influence of a patient motion on the magnetic resonance image data.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: David Grodzki, Mario Zeller, Carmel Hayes, Rene Kartmann
  • Publication number: 20180035892
    Abstract: A computer-implemented method of performing deep learning based isocenter positioning includes acquiring a plurality of slabs covering an anatomical area of interest that comprises a patient's heart. For each slab, one or more deep learning models are used to determine a likelihood score for the slab indicating a probability that the slab includes at least a portion of the patient's heart. A center position of the patient's heart may then be determined based on the likelihood scores determined for the plurality of slabs.
    Type: Application
    Filed: July 5, 2017
    Publication date: February 8, 2018
    Inventors: Xiaoguang LU, Carmel HAYES
  • Patent number: 9808203
    Abstract: A method includes introducing the examination object into an examination region of a combination device; recording emission computed tomography data over a measurement period and storing detection events and detection instants associated therewith; measuring magnetic resonance data of at least two subregions of the examination region at at least two instants during the recording period of the emission computed tomography data and storing the magnetic resonance data and the recording instants; determining motion information describing a motion of a region of the examination object at a first instant relative to the position at a second instant from the magnetic resonance data recorded at the first instant and the second instant, for each subregion; determining a motion model describing motion of the examination object, for the entire object, from information for the subregions; and calculating motion-corrected emission tomography data from detection events, detection instants and the motion model.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: November 7, 2017
    Assignees: Siemens Aktiengesellschaft, Westfaelische Wilhems-Universitaet Muenster
    Inventors: Carmel Hayes, Ralf Ladebeck, Klaus Schäfers
  • Patent number: 9684979
    Abstract: A method of magnetic resonance (MR) imaging of a volume undergoing repetitive motion includes obtaining source slice data indicative of a plurality of source slices during the repetitive motion, and obtaining anchor slice data indicative of an anchor slice during the repetitive motion. The anchor slice intersects the plurality of source slices. The source slice data and the anchor slice data are reconstructed. A three-dimensional image assembly procedure is implemented to generate, for each phase of the repetitive motion, volume data based on a respective subset of the reconstructed source slice data. For each phase of the repetitive motion, the respective subset of slices is selected based on a correlation of the source slice data and the anchor slice data along an intersection between each source slice and the anchor slice. The source slice data of the selected subset is corrected for misalignment with the anchor slice data.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: June 20, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Xiaoguang Lu, Peter Speier, Hasan Ertan Cetingul, Marie-Pierre Jolly, Michaela Schmidt, Christoph Guetter, Carmel Hayes, Arne Littmann, Hui Xue, Mariappan S. Nadar, Frank Sauer, Edgar Müller
  • Patent number: 9662017
    Abstract: A method for operating a Magnetic Resonance (MR) imaging system including generating radio frequency (RF) excitation pulses in a volume of patient anatomy that includes a patient's heart to provide subsequent acquisition of associated RF echo data and generating slice select magnetic field gradients for phase encoding and readout RF data acquisition in the volume of patient anatomy. The method also includes acquiring a plurality of slices of an image of the volume of patient anatomy within a plurality of cycles representing time period between successive beats of the patient's heart. The method also includes causing, by a control processor, accelerated acquisition of two or more slices of the plurality of slices within a quiescent phase of each of the plurality of cycles. The method further includes applying, by the control processor, one or more saturation areas proximate to a target volume of the patient anatomy.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: May 30, 2017
    Assignees: Siemens Healthcare GmbH, Northshore University Healthsystem
    Inventors: Shivraman Giri, Robert R. Edelman, Xiaoguang Lu, Carmel Hayes
  • Publication number: 20150285884
    Abstract: A method for operating a Magnetic Resonance (MR) imaging system including generating radio frequency (RF) excitation pulses in a volume of patient anatomy that includes a patient's heart to provide subsequent acquisition of associated RF echo data and generating slice select magnetic field gradients for phase encoding and readout RF data acquisition in the volume of patient anatomy. The method also includes acquiring a plurality of slices of an image of the volume of patient anatomy within a plurality of cycles representing time period between successive beats of the patient's heart. The method also includes causing, by a control processor, accelerated acquisition of two or more slices of the plurality of slices within a quiescent phase of each of the plurality of cycles. The method further includes applying, by the control processor, one or more saturation areas proximate to a target volume of the patient anatomy.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 8, 2015
    Applicants: NorthShore University HealthSystem Research Institute, Siemens Aktiengesellschaft
    Inventors: Shivraman Giri, Robert R. Edelman, Xiaoguang Lu, Carmel Hayes
  • Publication number: 20150091563
    Abstract: A method of magnetic resonance (MR) imaging of a volume undergoing repetitive motion includes obtaining source slice data indicative of a plurality of source slices during the repetitive motion, and obtaining anchor slice data indicative of an anchor slice during the repetitive motion. The anchor slice intersects the plurality of source slices. The source slice data and the anchor slice data are reconstructed. A three-dimensional image assembly procedure is implemented to generate, for each phase of the repetitive motion, volume data based on a respective subset of the reconstructed source slice data. For each phase of the repetitive motion, the respective subset of slices is selected based on a correlation of the source slice data and the anchor slice data along an intersection between each source slice and the anchor slice. The source slice data of the selected subset is corrected for misalignment with the anchor slice data.
    Type: Application
    Filed: June 9, 2014
    Publication date: April 2, 2015
    Inventors: Xiaoguang Lu, Peter Speier, Hasan Ertan Cetingul, Marie-Pierre Jolly, Michaela Schmidt, Christoph Guetter, Carmel Hayes, Arne Littmann, Hui Xue, Mariappan S. Nadar, Frank Sauer, Edgar Müller
  • Patent number: 8948484
    Abstract: A method and system for automated view planning for cardiac magnetic resonance imaging (MRI) acquisition is disclosed. The method and system automatically generate a full scan prescription using a single 3D MRI volume. The left ventricle (LV) is segmented in the 3D MRI volume. Cardiac landmarks are detected in the automatically prescribed slices. A full scan prescription, including a short axis stack and 2-chamber, 3-chamber, and 4-chamber views, is automatically generated based on cardiac anchors provided by the segmented left ventricle and the detected cardiac landmarks in the 3D MRI volume.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: February 3, 2015
    Assignees: Siemens Corporation, Siemens Aktiengesellschaft, National Institutes of Health, Siemens Canada Limited, Siemens Medical Solutions USA, Inc.
    Inventors: Xiaoguang Lu, Jens Guehring, Marie-Pierre Jolly, Bogdan Georgescu, Carmel Hayes, Peter Speier, Michaela Schmidt, Xiaoming Bi, Randall Kroeker, Dorin Comaniciu, Edgar Mueller
  • Publication number: 20140357980
    Abstract: A method includes introducing the examination object into an examination region of a combination device; recording emission computed tomography data over a measurement period and storing detection events and detection instants associated therewith; measuring magnetic resonance data of at least two subregions of the examination region at at least two instants during the recording period of the emission computed tomography data and storing the magnetic resonance data and the recording instants; determining motion information describing a motion of a region of the examination object at a first instant relative to the position at a second instant from the magnetic resonance data recorded at the first instant and the second instant, for each subregion; determining a motion model describing motion of the examination object, for the entire object, from information for the subregions; and calculating motion-corrected emission tomography data from detection events, detection instants and the motion model.
    Type: Application
    Filed: May 20, 2014
    Publication date: December 4, 2014
    Applicant: UNIVERSITÄT MÜNSTER
    Inventors: Carmel HAYES, Ralf LADEBECK, Klaus SCHÄFERS
  • Patent number: 8712133
    Abstract: A system receives cardiac cine MR images consists of multiple slices of the heart over time. A series of short axis images slices are received. Long axis images are also received by the system, wherein a base plane defined by landmark points is detected. An intersection of the base plane with a contour of a heart chamber is determined for a plurality of slices in the short axis image. A volume for each of the contour slices covering the heart chamber, including for contours that are limited by base plane intersections, is evaluated. All slice volumes are summed to determine a total volume of the chamber. In one embodiment the chamber is a left ventricle and the landmark is a mitral valve. An ejection factor is determined.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: April 29, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Gühring, Marie-Pierre Jolly, Christoph Guetter, Xiaoguang Lu, Carmel Hayes, Peter Speier, Davide Piccini
  • Publication number: 20130259337
    Abstract: A system receives cardiac cine MR images consists of multiple slices of the heart over time. A series of short axis images slices are received. Long axis images are also received by the system, wherein a base plane defined by landmark points is detected. An intersection of the base plane with a contour of a heart chamber is determined for a plurality of slices in the short axis image. A volume for each of the contour slices covering the heart chamber, including for contours that are limited by base plane intersections, is evaluated. All slice volumes are summed to determine a total volume of the chamber. In one embodiment the chamber is a left ventricle and the landmark is a mitral valve. An ejection factor is determined.
    Type: Application
    Filed: September 27, 2011
    Publication date: October 3, 2013
    Applicant: Siemens Corporation
    Inventors: Jens Gühring, Marie-Pierre Jolly, Christoph Guetter, Xiaoguang Lu, Carmel Hayes, Peter Speier, Davide Piccini
  • Patent number: 8520917
    Abstract: In a method and device to automatically determine a rest phase of the heart of an examination person in an imaging device, multiple images of the heart are acquired during a cardiac cycle and the rest phase of the heart is automatically determined by post-processing of the acquired images, and the determined rest phase is used for subsequent measurements.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: August 27, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Carmel Hayes, Katrin Christel Sprung
  • Patent number: 8315447
    Abstract: A method is disclosed for processing medical image data which image a structure layer by layer, the image data for at least some layers respectively including a plurality of layer images. In at least one embodiment, the method includes segmentation of the structure in the layer images and determination respectively of a position of a point in a layer image. In at least one embodiment, at least one layer image set is furthermore compiled on the basis of the representative points in the layer images.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: November 20, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Carmel Hayes