Patents by Inventor Carmen Leal Cervantes

Carmen Leal Cervantes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240332075
    Abstract: Methods of forming microelectronic devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. The methods include selectively depositing a first self-assembled monolayer (SAM) on the bottom of the gap; forming a barrier layer on the dielectric layer; selectively depositing a second self-assembled monolayer (SAM) on the barrier layer and on the bottom of the gap; treating the microelectronic device with a plasma to remove a first portion of the second self-assembled monolayer (SAM); selectively depositing a metal liner on the barrier layer on the sidewall; removing a second portion of the second self-assembled monolayer (SAM); and performing a gap fill process on the metal liner.
    Type: Application
    Filed: March 22, 2024
    Publication date: October 3, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Jiajie Cen, Kevin Kashefi, Zhiyuan Wu, Yang Zhou, Yong Jin Kim, Carmen Leal Cervantes, Ge Qu, Zheng Ju
  • Publication number: 20240297073
    Abstract: Methods of forming semiconductor devices by enhancing selective deposition are described. In some embodiments, a blocking layer is deposited on a metal surface before deposition of a barrier layer. The methods include exposing a substrate with a metal surface, a dielectric surface and an aluminum oxide surface or an aluminum nitride surface to a blocking molecule to form the blocking layer selectively on the metal surface over the dielectric surface and one of the aluminum oxide surface or the aluminum nitride surface.
    Type: Application
    Filed: March 3, 2023
    Publication date: September 5, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Muthukumar Kaliappan, Bhaskar Jyoti Bhuyan, Yong Jin Kim, Carmen Leal Cervantes, Xiangjin Xie, Jesus Candelario Mendoza-Gutierrez, Aaron Dangerfield, Michael Haverty, Mark Saly, Kevin Kashefi
  • Publication number: 20240258161
    Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. A self-assembled monolayer (SAM) is formed on the bottom of the gap which resists degradation when exposed to the ambient atmosphere. A barrier layer is selectively deposited on the sidewalls but not on the bottom of the gap. The SAM is removed after selectively depositing the barrier layer on the sidewalls.
    Type: Application
    Filed: January 22, 2024
    Publication date: August 1, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Yong Jin Kim, Carmen Leal Cervantes, Kevin Kashefi, Xingye Wang
  • Publication number: 20240258164
    Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. A pre-clean process is performed before a self-assembled monolayer (SAM) is formed on the bottom of the gap. A barrier layer is selectively deposited on the sidewalls but not on the bottom of the gap. The SAM is removed after selectively depositing the barrier layer on the sidewalls.
    Type: Application
    Filed: January 22, 2024
    Publication date: August 1, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Jiajie Cen, Carmen Leal Cervantes, Yong Jin Kim, Kevin Kashefi, Xiaodong Wang
  • Publication number: 20240183028
    Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.
    Type: Application
    Filed: February 15, 2024
    Publication date: June 6, 2024
    Inventors: Xiangjin XIE, Carmen LEAL CERVANTES, Feng CHEN, Lu CHEN, Wenjing XU, Aravind KAMATH, Cheng-Hsiung Matthew TSAI, Tae Hong HA, Alexander JANSEN, Xianmin TANG
  • Patent number: 11939666
    Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Carmen Leal Cervantes, Feng Chen, Lu Chen, Wenjing Xu, Aravind Kamath, Cheng-Hsiung Matthew Tsai, Tae Hong Ha, Alexander Jansen, Xianmin Tang
  • Patent number: 11756784
    Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: September 12, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Carmen Leal Cervantes, Alexander Jansen, Xiangjin Xie
  • Publication number: 20230253248
    Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. The methods include selectively depositing a self-assembled monolayer (SAM) on the bottom of the gap. The SAM comprises a hydrocarbon having a formula of H—C?C—R, wherein R is a linear alkyl chain or aryl group comprising from 1 to 20 carbon atoms or a formula of R?C?CR?, wherein R? and R? independently include a linear alkyl chain or aryl group comprising from 1 to 20 carbon atoms A barrier layer is formed on the SAM before selectively depositing a metal liner on the barrier layer. The SAM is removed after selectively depositing the metal liner on the barrier layer.
    Type: Application
    Filed: March 8, 2023
    Publication date: August 10, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Yang Zhou, Yong Jin Kim, Ge Qu, Zhiyuan Wu, Carmen Leal Cervantes, Feng Chen, Kevin Kashefi, Bhaskar Jyoti Bhuyan, Drew Phillips, Aaron Dangerfield
  • Publication number: 20230212747
    Abstract: Methods and apparatus for self-assembled monolayer (SAM) deposition are provided herein. In some embodiments, an apparatus for self-assembled monolayer (SAM) deposition includes: a chamber enclosing a processing volume; a substrate support disposed in the chamber and configured to support a substrate in the processing volume; a gas distribution system coupled to the chamber and configured to distribute a process gas into the processing volume; a first SAM precursor source fluidly coupled to the gas distribution system to provide a first SAM precursor as a part of the process gas; and a second SAM precursor source fluidly coupled to the gas distribution system to provide a second SAM precursor, different than the first SAM precursor, as a part of the process gas, wherein the first and second SAM precursor sources are independently controllable to control a relative percentage of the first and second SAM precursors in the process gas with respect to each other.
    Type: Application
    Filed: November 11, 2022
    Publication date: July 6, 2023
    Inventors: Kevin KASHEFI, Joel Minster HUSTON, Michael Lee MCSWINEY, Carmen LEAL CERVANTES, Yongjin KIM, Drew William PHILLIPS, Mark Joseph SALY
  • Publication number: 20230072614
    Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. A self-assembled monolayer (SAM) is formed on the bottom of the gap, and a barrier layer is formed on the SAM before selectively depositing a metal liner on the barrier layer. The SAM is removed after selectively depositing the metal liner on the barrier layer.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Ge Qu, Zhiyuan Wu, Feng Chen, Carmen Leal Cervantes, Yong Jin Kim, Kevin Kashefi, Xianmin Tang
  • Publication number: 20220336207
    Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Inventors: Carmen LEAL CERVANTES, Alexander JANSEN, Xiangjin XIE
  • Patent number: 11443936
    Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: September 13, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Carmen Leal Cervantes, Alexander Jansen, Xiangjin Xie
  • Publication number: 20220275501
    Abstract: Methods of surface pretreatment during selective deposition are disclosed. One or more embodiment of the disclosure provides surface pretreatments which facilitate the removal of blocking layers. Some embodiments of the disclosure include a surface pretreatment comprising exposure of a substrate with a first surface and a second surface to modify the first surface, a blocking layer is deposited on the modified first surface, a film is selectively deposited on the second surface over the blocking layer, and the blocking layer is removed.
    Type: Application
    Filed: February 28, 2022
    Publication date: September 1, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Carmen Leal Cervantes, Yong Jin Kim, Kevin Kashefi
  • Publication number: 20210398798
    Abstract: A method of cleaning a surface of a substrate uses alcohol and water treatments. The method may include applying an alcohol treatment on a surface of the substrate with the alcohol treatment configured to provide surface reduction and applying a water treatment to the surface of the substrate with the water treatment configured to enhance selectivity of at least a portion of the surface for a subsequent barrier layer process by removing alcohol from the at least a portion of the surface. The water treatment may be performed simultaneously with the alcohol treatment or performed after the alcohol treatment. The water treatment may include vaporized water or water injected into a plasma to produce hydrogen or oxygen radicals.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Inventors: Carmen LEAL CERVANTES, Alexander JANSEN, Xiangjin XIE
  • Publication number: 20210371972
    Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.
    Type: Application
    Filed: June 1, 2020
    Publication date: December 2, 2021
    Inventors: Xiangjin XIE, Carmen LEAL CERVANTES, Feng CHEN, Lu CHEN, Wenjing XU, Aravind KAMATH, Cheng-Hsiung Matthew TSAI, Tae Hong HA, Alexander JANSEN, Xianmin TANG
  • Publication number: 20210164093
    Abstract: Methods for monitoring process chambers using a controllable plasma oxidation process followed by a controlled reduction process and metrology are described. In some embodiments, the metrology comprises measuring the reflectivity of the metal oxide film formed by the controllable plasma oxidation process and the reduced metal film or surface modified film formed by reducing the metal oxide film.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 3, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Xiangjin Xie, Carmen Leal Cervantes