Patents by Inventor Carole A. Teolis

Carole A. Teolis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130331121
    Abstract: Disclosed herein is the use of Wi-Fi based location estimates of a mobile device to provide global offset corrections (including automated initialization) and enhanced navigation accuracy through delivery of heading corrections. In an embodiment, dead reckoning tracking data may be received for a tracked subject. The tracking data includes a plurality of tracking points forming a tracking path of the tracked subject. A Wi-Fi position system location estimate is also obtained. The Wi-Fi position system location estimate is one of a plurality of Wi-Fi position system location estimates correlated to the dead reckoning tracking data. And a tracking related parameter is determined based on the correlation of the dead reckoning tracking data to the Wi-Fi position system location estimate.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 12, 2013
    Inventors: Amrit Bandyopadhyay, Daniel Hakim, Carole Teolis
  • Publication number: 20130332065
    Abstract: Disclosed herein are methods and systems for fusion of sensor and map data using constraint based optimization. In an embodiment, a computer-implemented method may include obtaining tracking data for a tracked subject, the tracking data including data from a dead reckoning sensor; obtaining constraint data for the tracked subject; and using a convex optimization method based on the tracking data and the constraint data to obtain a navigation solution. The navigation solution may be a path and the method may further include propagating the constraint data by a motion model to produce error bounds that continue to constrain the path over time. The propagation of the constraint data may be limited by other sensor data and/or map structural data.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 12, 2013
    Inventors: Daniel Hakim, Christopher Giles, John Karvounis, Benjamin Funk, Jared Napora, Carole Teolis
  • Publication number: 20130311134
    Abstract: A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 21, 2013
    Applicant: TRX SYSTEMS, INC.
    Inventors: Kamiar Kordari, Benjamin Funk, Jared Napora, Ruchika Verma, Carole Teolis, Travis Young
  • Publication number: 20130311133
    Abstract: A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
    Type: Application
    Filed: March 8, 2013
    Publication date: November 21, 2013
    Inventors: Kamiar Kordari, Benjamin Funk, Jared Napora, Ruchika Verma, Carole Teolis, Travis Young
  • Publication number: 20130166195
    Abstract: A system and method for locating, tracking, and/or monitoring the status of personnel and/or assets (collectively “trackees”), both indoors and outdoors, is provided. Tracking data obtained from any number of sources utilizing any number of tracking methods may be provided as input to a mapping application. The mapping application generates position estimates for trackees using a suite of mapping tools to make corrections to the tracking data. The mapping application further uses information from building data, when available, to enhance position estimates. Indoor tracking methods including sensor fusion methods, map matching methods, and map building methods may be implemented compute a more accurate tracking estimate for trackees. Outdoor tracking methods may be implemented to enhance outdoor tracking data by combining tracking estimates such as inertial tracks with magnetic and/or compass data if and when available, and with GPS, if and when available.
    Type: Application
    Filed: September 14, 2012
    Publication date: June 27, 2013
    Inventors: Amrit Bandyopadhyay, Daniel Hakim, Benjamin E. Funk, Eric Asher Kohn, Carole A. Teolis, Gilmer Blankenship
  • Publication number: 20130166198
    Abstract: The invention is directed to methods and systems for locating and monitoring the status of people and moveable assets, such as first responders, including firefighters and other public service personnel, and their equipment both indoors and out. The invention provides for locating and monitoring the status of people and assets in environments where GPS systems do not operate, or where operation is impaired or otherwise limited. The system and method uses inertial navigation to determine the location, motion and orientation of the personnel or assets and communicates with an external monitoring station to receive requests for location, motion orientation and status information and to transmit the location, motion orientation and status information to the monitoring station.
    Type: Application
    Filed: September 14, 2012
    Publication date: June 27, 2013
    Inventors: Benjamin E. Funk, Amrit Bandyopadhyay, Eric A. Kohn, Neil Goldsman, Carole A. Teolis, Gilmer L. Blankenship
  • Publication number: 20130166202
    Abstract: A system and method for locating, tracking, and/or monitoring the status of personnel and/or assets (collectively “trackees”), both indoors and outdoors, is provided. Tracking data obtained from any number of sources utilizing any number of tracking methods may be provided as input to a mapping application. The mapping application generates position estimates for trackees using a suite of mapping tools to make corrections to the tracking data. The mapping application further uses information from building data, when available, to enhance position estimates. Indoor tracking methods including sensor fusion methods, map matching methods, and map building methods may be implemented compute a more accurate tracking estimate for trackees. Outdoor tracking methods may be implemented to enhance outdoor tracking data by combining tracking estimates such as inertial tracks with magnetic and/or compass data if and when available, and with GPS, if and when available.
    Type: Application
    Filed: September 14, 2012
    Publication date: June 27, 2013
    Inventors: Amrit Bandyopadhyay, Daniel Hakim, Benjamin E. Funk, Eric Asher Kohn, Carole A. Teolis, Gilmer Blankeship
  • Publication number: 20120130632
    Abstract: A system and method for locating, tracking, and/or monitoring the status of personnel and/or assets (“trackees”), both indoors and outdoors, is provided. Tracking data obtained from various sources utilizing any number of tracking methods may be provided as input to a mapping application. The mapping application generates position estimates for trackees using a suite of mapping tools to make corrections to the tracking data. The mapping application further uses information from building data, when available, to enhance position estimates. Indoor tracking methods including, sensor fusion methods, map matching methods, and map building methods may be implemented to take tracking data from one or more trackees and compute a more accurate tracking estimate for each trackee. Outdoor tracking methods may be implemented to enhance outdoor tracking data by combining tracking estimates such as inertial tracks with magnetic data, compass data, and/or with GPS, if and when available.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 24, 2012
    Inventors: Amrit Bandyopadhyay, Daniel Hakim, Benjamin E. Funk, Eric Asher Kohn, Carole A. Teolis, Gilmer Blankenship
  • Publication number: 20090043504
    Abstract: A system and method for locating, tracking, and/or monitoring the status of personnel and/or assets (collectively “trackees”), both indoors and outdoors, is provided. Tracking data obtained from any number of sources utilizing any number of tracking methods (e.g., inertial navigation and signal-based methods) may be provided as input to a mapping application. The mapping application may generate position estimates for trackees using a suite of mapping tools to make corrections to the tracking data. The mapping application may further use information from building data, when available, to enhance position estimates. Indoor tracking methods including, for example, sensor fusion methods, map matching methods, and map building methods may be implemented to take tracking data from one or more trackees and compute a more accurate tracking estimate for each trackee.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 12, 2009
    Inventors: AMRIT BANDYOPADHYAY, Daniel Hakim, Benjamin E. Funk, Eric Asher Kohn, Carole A. Teolis, Gilmer Blankenship
  • Patent number: 7424823
    Abstract: Methods and apparatuses are described for determining the operating status of a turbine engine. An eddy current sensor is provided having a sensing field in communication with a plurality of rotating turbine blades during a revolution of a turbine engine. The sensor generates signature data for the passage of each blade. An analytic waveform is determined from the signature data and blade characteristic data is determined from the analytic waveform.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: September 16, 2008
    Assignee: Techno-Sciences, Inc.
    Inventors: Carole Teolis, Anthony Teolis
  • Patent number: 7409854
    Abstract: A method and apparatus for determining the operating condition of a turbine engine. An eddy current sensor is provided having a sensing field in communication with a plurality of rotating turbine blades during a revolution of a turbine engine. A threshold point value is defined for the signature data. A plurality of positive threshold point pairs and negative threshold point pairs are identified. A plurality of positive threshold widths from a plurality of times elapsed between the positive threshold point pairs and a plurality of negative threshold widths from a plurality of times elapsed between the negative threshold point pairs are determined. A plurality of threshold ratios are determined from a plurality of pairs of positive and negative threshold widths. A variance of the threshold ratios is correlated with an operating condition of the turbine engine.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: August 12, 2008
    Assignee: Techno-Sciences, Inc.
    Inventors: Carole Teolis, Anthony Teolis, Christine Kim
  • Publication number: 20080077326
    Abstract: The present invention is directed to methods and systems for locating and monitoring the status of people and moveable assets, such as first responders, including firefighters and other public service personnel, and their equipment both indoors and out. The invention can provide for locating and monitoring the status of people and assets in environments where GPS systems do not operate, or where operation is impaired or otherwise limited. The system and method uses inertial navigation to determine the location, motion and orientation of the personnel or assets and communicates with an external monitoring station to receive requests for location, motion orientation and status information and to transmit the location, motion orientation and status information to the monitoring station.
    Type: Application
    Filed: May 31, 2007
    Publication date: March 27, 2008
    Inventors: Benjamin Funk, Amrit Bandyopadhyay, Eric Kohn, Neil Goldsman, Carole Teolis, Gilmer Blankenship
  • Publication number: 20060122798
    Abstract: Methods and apparatuses are described for determining the operating status of a turbine engine. An eddy current sensor is provided having a sensing field in communication with a plurality of rotating turbine blades during a revolution of a turbine engine. The sensor generates signature data for the passage of each blade. An analytic waveform is determined from the signature data and blade characteristic data is determined from the analytic waveform.
    Type: Application
    Filed: October 19, 2005
    Publication date: June 8, 2006
    Inventors: Carole Teolis, Anthony Teolis
  • Publication number: 20060120197
    Abstract: A method and apparatus for determining the operating condition of a turbine engine. An eddy current sensor is provided having a sensing field in communication with a plurality of rotating turbine blades during a revolution of a turbine engine. A threshold point value is defined for the signature data. A plurality of positive threshold point pairs and negative threshold point pairs are identified. A plurality of positive threshold widths from a plurality of times elapsed between the positive threshold point pairs and a plurality of negative threshold widths from a plurality of times elapsed between the negative threshold point pairs are determined. A plurality of threshold ratios are determined from a plurality of pairs of positive and negative threshold widths. A variance of the threshold ratios is correlated with an operating condition of the turbine engine.
    Type: Application
    Filed: October 19, 2005
    Publication date: June 8, 2006
    Inventors: Carole Teolis, Anthony Teolis, Christine Kim