Patents by Inventor Carolin Tolksdorf

Carolin Tolksdorf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10074723
    Abstract: A field plate trench FET includes a substrate, a gate buried at least partly within the substrate, and a field plate disposed below the gate, both the gate and the field plate being disposed within a trench in the substrate and being surrounded by an insulator. A p-doped domain is disposed within the substrate below the trench. Also described is a semiconductor component having a substrate and a plurality of field plate trench FETs disposed within the substrate.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: September 11, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Carolin Tolksdorf, Ingo Martini, Frank Lipski, Timm Hoehr
  • Publication number: 20180240879
    Abstract: A field plate trench FET includes a substrate, a gate buried at least partly within the substrate, and a field plate disposed below the gate, both the gate and the field plate being disposed within a trench in the substrate and being surrounded by an insulator. A p-doped domain is disposed within the substrate below the trench. Also described is a semiconductor component having a substrate and a plurality of field plate trench FETs disposed within the substrate.
    Type: Application
    Filed: May 13, 2014
    Publication date: August 23, 2018
    Inventors: Carolin Tolksdorf, Ingo Martini, Frank Lipski, Timm HOEHR
  • Patent number: 9711621
    Abstract: A trench transistor having a semiconductor body includes a source region, a body region, a drain region electrically connected to a drain contact, and a gate trench including a gate electrode which is isolated from the semiconductor body. The gate electrode is configured to control current flow between the source region and the drain region along at least a first side wall of the gate trench. The trench transistor further includes a doped semiconductor region having dopants introduced into the semiconductor body through an unmasked part of the walls of a trench.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: July 18, 2017
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schaeffer
  • Patent number: 9660550
    Abstract: A generator device for the voltage supply of a motor vehicle is equipped with at least one rectifying element for rectifying an alternating voltage provided by a generator. The rectifying element has an n-channel MOS field-effect transistor in which the gate, the body area, and the source area are electrically fixedly connected to one another and in which the drain area is used as a cathode.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: May 23, 2017
    Assignees: Robert Bosch GmbH, Infineon Technologies AG
    Inventors: Richard Spitz, Alfred Goerlach, Carolin Tolksdorf, Dirk Ahlers, Dietrich Bonart
  • Publication number: 20140332885
    Abstract: A lateral trench transistor has a semiconductor body having a source region, a source contact, a body region, a drain region, and a gate trench, in which a gate electrode which is isolated from the semiconductor body is embedded. A heavily doped semiconductor region is provided within the body region or adjacent to it, and is electrically connected to the source contact, and whose dopant type corresponds to that of the body region.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 13, 2014
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schaeffer
  • Patent number: 8829584
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 8815686
    Abstract: A method for production of doped semiconductor regions in a semiconductor body of a lateral trench transistor includes forming a trench in the semiconductor body and introducing dopants into at least one area of the semiconductor body that is adjacent to the trench, by carrying out a process in which dopants enter the at least one area through inner walls of the trench.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 26, 2014
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schaeffer
  • Publication number: 20130329476
    Abstract: A generator device for the voltage supply of a motor vehicle is equipped with at least one rectifying element for rectifying an alternating voltage provided by a generator. The rectifying element has an n-channel MOS field-effect transistor in which the gate, the body area, and the source area are electrically fixedly connected to one another and in which the drain area is used as a cathode.
    Type: Application
    Filed: October 20, 2011
    Publication date: December 12, 2013
    Inventors: Richard Spitz, Alfred Goerlach, Carolin Tolksdorf
  • Patent number: 8431988
    Abstract: A lateral trench transistor has a semiconductor body having a source region, a source contact, a body region, a drain region, and a gate trench, in which a gate electrode which is isolated from the semiconductor body is embedded. A heavily doped semiconductor region is provided within the body region or adjacent to it, and is electrically connected to the source contact, and whose dopant type corresponds to that of the body region.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: April 30, 2013
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schäffer
  • Publication number: 20130009227
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 8324686
    Abstract: A semiconductor device and method for manufacturing. One embodiment provides a semiconductor device including an active cell region and a gate pad region. A conductive gate layer is arranged in the active cell region and a conductive resistor layer is arranged in the gate pad region. The resistor layer includes a resistor region which includes a grid-like pattern of openings formed in the resistor layer. A gate pad metallization is arranged at least partially above the resistor layer and in electrical contact with the resistor layer. An electrical connection is formed between the gate layer and the gate pad metallization, wherein the electrical connection includes the resistor region.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: December 4, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Carolin Tolksdorf
  • Patent number: 8294206
    Abstract: An integrated circuit device includes a semiconductor body fitted with a first electrode and a second electrode on opposite surfaces. A control electrode on an insulating layer controls channel regions of body zones for a current flow between the two electrodes. A drift section adjoining the channel regions comprises drift zones and charge compensation zones. A part of the charge compensation zones includes conductively connected charge compensation zones electrically connected to the first electrode. Another part includes nearly-floating charge compensation zones, so that an increased control electrode surface has a monolithically integrated additional capacitance CZGD in a cell region of the semiconductor device.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 23, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Michael Rueb
  • Patent number: 8273622
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 25, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Publication number: 20110241104
    Abstract: An integrated circuit device includes a semiconductor body fitted with a first electrode and a second electrode on opposite surfaces. A control electrode on an insulating layer controls channel regions of body zones for a current flow between the two electrodes. A drift section adjoining the channel regions comprises drift zones and charge compensation zones. A part of the charge compensation zones includes conductively connected charge compensation zones electrically connected to the first electrode. Another part includes nearly-floating charge compensation zones, so that an increased control electrode surface has a monolithically integrated additional capacitance CZGD in a cell region of the semiconductor device.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Applicant: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Michael Rueb
  • Publication number: 20110244646
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 7982253
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 7977737
    Abstract: A semiconductor device with inherent capacitances and method for its production. The semiconductor device has an inherent feedback capacitance between a control electrode and a first electrode. In addition, the semiconductor device has an inherent drain-source capacitance between the first electrode and a second electrode. At least one monolithically integrated additional capacitance is connected in parallel to the inherent feedback capacitance or in parallel to the inherent drain-source capacitance. The additional capacitance comprises a first capacitor surface and a second capacitor surface opposite the first capacitor surface. The capacitor surfaces are structured conductive layers of the semiconductor device on a front side of the semiconductor body, between which a dielectric layer is located and which form at least one additional capacitor.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: July 12, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Anton Mauder, Holger Kapels, Gerald Deboy, Franz Hirler
  • Patent number: 7973359
    Abstract: A semiconductor device with a charge carrier compensation structure. In one embodiment, the semiconductor device has a central cell field with a gate and source structure. At least one bond contact area is electrically coupled to the gate structure or the source structure. A capacitance-increasing field plate is electrically coupled to at least one of the near-surface bond contact areas.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: July 5, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Armin Willmeroth, Anton Mauder, Gerald Deboy, Holger Kapels, Carolin Tolksdorf, Frank Pfirsch
  • Patent number: 7973362
    Abstract: A semiconductor component includes a semiconductor body having an edge with an edge zone of a first conductivity type. Charge compensation regions of a second conductivity type are embedded into the edge zone, with the charge compensation regions extending from a top side of the semiconductor component vertically into the semiconductor body. For the number Ns of charge carriers present in a volume Vs between two charge compensation regions that are adjacent in a direction perpendicular to the edge, and for the number Np of charge carriers present in a volume Vp between two charge compensation regions that are adjacent in a direction parallel to the edge, Np>Ns holds true.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: July 5, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Michael Rueb, Carolin Tolksdorf, Markus Schmitt
  • Patent number: 7821064
    Abstract: A lateral MISFET having a semiconductor body has a doped semiconductor substrate of a first conduction type and an epitaxial layer of a second conduction type, which is complementary to the first conduction type, the epitaxial layer being provided on the semiconductor substrate. This MISFET has, on the top side of the semiconductor body, a drain, a source, and a gate electrode with gate insulator. A semiconductor zone of the first conduction type is embedded in the epitaxial layer in a manner adjoining the gate insulator, a drift zone of the second conduction type being arranged between the semiconductor zone and the drain electrode in the epitaxial layer. The drift zone has pillar-type regions which are arranged in rows and columns and whose boundary layers have a metal layer which in each case forms a Schottky contact with the material of the drift zone.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: October 26, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Rueb, Markus Schmitt, Carolin Tolksdorf, Uwe Wahl, Armin Willmeroth