Patents by Inventor Carolyn R. McCormick

Carolyn R. McCormick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9516752
    Abstract: An underfill device and method have been are provided. Advantages of devices and methods shown include dissipation of stresses at an interface between components such as a chip package and an adjacent circuit board. Another advantage includes faster manufacturing time and ease of manufacture using underfill devices and methods shown. An underfill assembly can be pre made with conductive structures included within the underfill assembly. Steps such as flowing epoxy and curing can be eliminated or performed concurrently with other manufacturing steps.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 6, 2016
    Assignee: Intel Corporation
    Inventors: Patricia A Brusso, Mitul B Modi, Carolyn R. McCormick, Ruben Cadena, Sankara J Subramanian, Edward L. Martin
  • Publication number: 20130208411
    Abstract: An underfill device and method have been are provided. Advantages of devices and methods shown include dissipation of stresses at an interface between components such as a chip package and an adjacent circuit board. Another advantage includes faster manufacturing time and ease of manufacture using underfill devices and methods shown. An underfill assembly can be pre made with conductive structures included within the underfill assembly. Steps such as flowing epoxy and curing can be eliminated or performed concurrently with other manufacturing steps.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 15, 2013
    Inventors: Patricia A. Brusso, Mitul B. Modi, Carolyn R. McCormick, Ruben Cadena, Sankara J. Subramanian, Edward L. Martin
  • Patent number: 8399291
    Abstract: An underfill device and method have been are provided. Advantages of devices and methods shown include dissipation of stresses at an interface between components such as a chip package and an adjacent circuit board. Another advantage includes faster manufacturing time and ease of manufacture using underfill devices and methods shown. An underfill assembly can be pre made with conductive structures included within the underfill assembly. Steps such as flowing epoxy and curing can be eliminated or performed concurrently with other manufacturing steps.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: March 19, 2013
    Assignee: Intel Corporation
    Inventors: Patricia A Brusso, Mitul B Modi, Carolyn R. McCormick, Ruben Cadena, Sankara J Subramanian, Edward L. Martin
  • Patent number: 7633142
    Abstract: An IC package is disclosed that comprises a core region disposed between upper and lower build-up layer regions. In one embodiment, the core region comprises a low modulus material. In an alternative embodiment the core region comprises a medium modulus material. In an alternative embodiment, the core material is selected based upon considerations such as it modulus, its coefficient of thermal expansion, and/or the resulting total accumulated strain. In an alternative embodiment, boundaries with respect to the softness of the core material are established be considering the reflective density in opposing conductive build-up layers above and below the core region.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: December 15, 2009
    Assignee: Intel Corporation
    Inventors: Mitul B. Modi, Patricia A. Brusso, Ruben Cadena, Carolyn R. McCormick, Sankara J. Subramanian
  • Patent number: 7352061
    Abstract: An IC package is disclosed that comprises a core region disposed between upper and lower build-up layer regions. In one embodiment, the core region comprises a low modulus material. In an alternative embodiment the core region comprises a medium modulus material. In an alternative embodiment, the core material is selected based upon considerations such as its modulus, its coefficient of thermal expansion, and/or the resulting total accumulated strain. In an alternative embodiment, boundaries with respect to the softness of the core material are established by considering the relative density in opposing conductive build-up layers above and below the core region.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: April 1, 2008
    Assignee: Intel Corporation
    Inventors: Mitul B. Modi, Patricia A. Brusso, Ruben Cadena, Carolyn R. McCormick, Sankara J. Subramanian
  • Patent number: 7271349
    Abstract: A protective coating of insulating material is formed around a clearance hole in a conductive layer of a printed circuit board, so that the conductive material in a via within the clearance hole will not contact the conductive layer and create a short circuit. In one embodiment, the protective coating is sufficiently hard to deflect a drill bit being used to drill the via hole, thus protecting against misregistered drilled holes.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: September 18, 2007
    Assignee: Intel Corporation
    Inventors: Rebecca A. Jessep, Terrance J. Dishongh, Carolyn R. McCormick, Thomas O. Morgan
  • Patent number: 7168164
    Abstract: Methods to shield conductive layer from via. A protective coating of insulating material is formed around a clearance hole in a conductive layer of a printed circuit board, so that the conductive material in a via within the clearance hole will not contact the conductive layer and create a short circuit. In one embodiment, the protective coating is sufficiently hard to deflect a drill bit being used to drill the via hole, thus protecting against misregistered drilled holes.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: January 30, 2007
    Assignee: Intel Corporation
    Inventors: Rebecca A. Jessep, Terrance J. Dishongh, Carolyn R. McCormick, Thomas O. Morgan
  • Patent number: 7036217
    Abstract: According to a method of mounting electronic components on a printed circuit board (PCB), the electrical contacts of the components are coupled to PCB bonding pads that are intersected by via pads. To minimize various defects encountered during solder reflow, while concurrently minimizing PCB area and manufacturing costs, the via pads are formed so that the via holes substantially avoid underlying the solder fillets coupling the component contacts to the PCB bonding pads. In one embodiment, the via pads are formed in the inter-pad space beneath the component; in another embodiment they are offset from the bonding pads. A substrate, an electronic assembly, and an electronic system are also described.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: May 2, 2006
    Assignee: Intel Corporation
    Inventors: Tom E. Pearson, Carolyn R. McCormick, Jayne L. Mershon
  • Patent number: 6927346
    Abstract: Apparatus and methods for interconnecting a SMT component interconnect to a via-in-pad (VIP) interconnect. A first reflowable material is deposited on the VIP bond pad. A sphere having a higher melt temperature than the reflow temperature of the first interconnect material is deposited on the first interconnect material. A first reflow process is performed to interconnect the sphere and the VIP bond pad while the sphere remains solid, and the first reflowable material preventing the first interconnect material from migrating into the via-in-pad.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: August 9, 2005
    Assignee: Intel Corporation
    Inventors: Carolyn R. McCormick, Terrance J. Dishongh
  • Publication number: 20040238216
    Abstract: A protective coating of insulating material is formed around a clearance hole in a conductive layer of a printed circuit board, so that the conductive material in a via within the clearance hole will not contact the conductive layer and create a short circuit. In one embodiment, the protective coating is sufficiently hard to deflect a drill bit being used to drill the via hole, thus protecting against misregistered drilled holes.
    Type: Application
    Filed: July 8, 2004
    Publication date: December 2, 2004
    Inventors: Rebecca A. Jessep, Terrance J. Dishongh, Carolyn R. McCormick, Thomas O. Morgan
  • Publication number: 20040118606
    Abstract: Apparatus and methods providing for interconnecting a SMT component interconnect to a via-in-pad (VIP) interconnect is presented. In one embodiment in accordance with the invention, a first reflowable electrically conductive interconnect material is deposited on the VIP bond pad. A sphere comprising an electrically conductive material having a higher melt temperature than the reflow temperature of the first interconnect material is deposited on the first interconnect material. A first reflow process is performed to interconnect the sphere and the VIP bond pad while the sphere remains solid. A second electrically conductive interconnect material having a reflow temperature lower than the melt temperature of the sphere is deposited on the component interconnect and a second reflow process is performed to interconnect the sphere to the component interconnect while the sphere remains solid, effectively preventing the second interconnect material from migrating into the plated though hole.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Carolyn R. McCormick, Terrance J. Dishongh
  • Publication number: 20040084210
    Abstract: A first signal routing layer may be formed on a first surface of a printed circuit board (PCB). An array of interconnections may formed on the first surface of the PCB, the array of interconnections comprising at least one padless via formed within the PCB, the at least one padless via extending from the first signal routing layer to at least one conductive plane and/or a second signal routing layer. The at least one padless via may be in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer. A component may be attached to the PCB, with a solder interconnection between the at least one padless via and a contact pad on a bottom surface of the component. The component may be, for example, an electronic component such as a ball grid array (BGA) component or a leadless surface mount component.
    Type: Application
    Filed: July 22, 2003
    Publication date: May 6, 2004
    Inventors: Terrance J. Dishongh, Carolyn R. McCormick
  • Patent number: 6630631
    Abstract: A first signal routing layer may be formed on a first surface of a printed circuit board (PCB). An array of interconnections may formed on the first surface of the PCB, the array of interconnections comprising at least one padless via formed within the PCB, the at least one padless via extending from the first signal routing layer to at least one conductive plane and/or a second signal routing layer. The at least one padless via may be in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer. A component may be attached to the PCB, with a solder interconnection between the at least one padless via and a contact pad on a bottom surface of the component. The component may be, for example, an electronic component such as a ball grid array (BGA) component or a leadless surface mount component.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: October 7, 2003
    Assignee: Intel Corporation
    Inventors: Terrance J. Dishongh, Carolyn R. McCormick
  • Publication number: 20030183421
    Abstract: A first signal routing layer may be formed on a first surface of a printed circuit board (PCB). An array of interconnections may formed on the first surface of the PCB, the array of interconnections comprising at least one padless via formed within the PCB, the at least one padless via extending from the first signal routing layer to at least one conductive plane and/or a second signal routing layer. The at least one padless via may be in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer. A component may be attached to the PCB, with a solder interconnection between the at least one padless via and a contact pad on a bottom surface of the component. The component may be, for example, an electronic component such as a ball grid array (BGA) component or a leadless surface mount component.
    Type: Application
    Filed: March 27, 2002
    Publication date: October 2, 2003
    Inventors: Terrance J. Dishongh, Carolyn R. McCormick
  • Patent number: 6580174
    Abstract: An apparatus that includes a substrate, one or more via in pads in the substrate; and one or more vents in at least one of the one or more via in pads, the one or more vents connecting an outer diameter of at least one of the one or more via in pads to a diameter larger than the via.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: June 17, 2003
    Assignee: Intel Corporation
    Inventors: Carolyn R. McCormick, Rebecca A. Jessep, John H. Dungan, David W. Boggs, Daryl A. Sato
  • Publication number: 20030101585
    Abstract: According to a method of mounting electronic components on a printed circuit board (PCB), the electrical contacts of the components are coupled to PCB bonding pads that are intersected by via pads. To minimize various defects encountered during solder reflow, while concurrently minimizing PCB area and manufacturing costs, the via pads are formed so that the via holes substantially avoid underlying the solder fillets coupling the component contacts to the PCB bonding pads. In one embodiment, the via pads are formed in the inter-pad space beneath the component; in another embodiment they are offset from the bonding pads. A substrate, an electronic assembly, and an electronic system are also described.
    Type: Application
    Filed: January 21, 2003
    Publication date: June 5, 2003
    Applicant: Intel Corporation
    Inventors: Tom E. Pearson, Carolyn R. McCormick, Jayne L. Mershon
  • Publication number: 20030091730
    Abstract: A protective coating of insulating material is formed around a clearance hole in a conductive layer of a printed circuit board, so that the conductive material in a via within the clearance hole will not contact the conductive layer and create a short circuit. In one embodiment, the protective coating is sufficiently hard to deflect a drill bit being used to drill the via hole, thus protecting against misregistered drilled holes.
    Type: Application
    Filed: September 4, 2002
    Publication date: May 15, 2003
    Inventors: Rebecca A. Jessep, Terrance J. Dishongh, Carolyn R. McCormick, Thomas O. Morgan
  • Publication number: 20030064546
    Abstract: An apparatus that includes a substrate, one or more via in pads in the substrate; and one or more vents in at least one of the one or more via in pads.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Carolyn R. McCormick, Rebecca A. Jessep, John H. Dungan, David W. Boggs, Daryl A. Sato
  • Patent number: 6509530
    Abstract: To mount electronic components on a printed circuit board (PCB), the electrical contacts of the components are coupled to PCB bonding pads that are intersected by via pads. To minimize various defects encountered during solder reflow, while concurrently minimizing PCB area and manufacturing costs, the via pads are formed so that the via holes substantially avoid underlying the solder fillets coupling the component contacts to the PCB bonding pads. In one embodiment, the via pads are formed in the inter-pad space beneath the component; in another embodiment they are offset from the bonding pads. A substrate, an electronic assembly, and an electronic system are described.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: January 21, 2003
    Assignee: Intel Corporation
    Inventors: Tom E. Pearson, Carolyn R. McCormick, Jayne L. Mershon
  • Publication number: 20020195269
    Abstract: According to a method of mounting electronic components on a printed circuit board (PCB), the electrical contacts of the components are coupled to PCB bonding pads that are intersected by via pads. To minimize various defects encountered during solder reflow, while concurrently minimizing PCB area and manufacturing costs, the via pads are formed so that the via holes substantially avoid underlying the solder fillets coupling the component contacts to the PCB bonding pads. In one embodiment, the via pads are formed in the inter-pad space beneath the component; in another embodiment they are offset from the bonding pads. A substrate, an electronic assembly, and an electronic system are also described.
    Type: Application
    Filed: June 22, 2001
    Publication date: December 26, 2002
    Applicant: Intel Corporation
    Inventors: Tom E. Pearson, Carolyn R. McCormick, Jayne L. Mershon