Patents by Inventor Carolyn Seepersad

Carolyn Seepersad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11623396
    Abstract: The present disclosure relates to a tensioning system for use in a stereolithography manufacturing application. The system may have a build plate for supporting a three dimensional part being formed using a photo responsive resin, a base plate and a release element extending over the base plate. The release element is configured to receive a quantity of photo responsive resin for forming a new material layer of the three dimensional part. A pair of tensioning components are secured to opposite ends of the release element, and apply a controlled tension force to the release element during peeling of the release element to reduce a separation force required to separate the release element from the new material layer after the new material layer is cured.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: April 11, 2023
    Assignees: Lawrence Livermore National Security, LLC, Board of Regents, The University of Texas System
    Inventors: Eric B. Duoss, James Oakdale, Nicholas Anthony Rodriguez, Hongtao Song, Richard Crawford, Carolyn Seepersad, Morgan Chen
  • Patent number: 11360348
    Abstract: The present disclosure relates to a liquid crystal display (LCD) system. The system in one example has a light source for generating unpolarized light, and an LCD screen arranged in a path of transmittance of the unpolarized light. First and second wire grid polarizers are arranged adjacent to the LCD screen and each have a plurality of nano-scale wires, with the first and second wire grid polarizers have differing polarizations. A pitch of each of the nano-scale wires is no larger than one-third a wavelength of the unpolarized light from the light source. The wire grid polarizers create, in connection with operation of the LCD screen, a 2D light mask suitable for initiating the polymerization of an optically curable material.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: June 14, 2022
    Assignees: Lawrence Livermore National Security, LLC, Board of Regents, The University of Texas System
    Inventors: Eric B. Duoss, James Oakdale, Nicholas Anthony Rodriguez, Hongtao Song, Richard Crawford, Carolyn Seepersad, Morgan Chen
  • Publication number: 20220137452
    Abstract: The present disclosure relates to a liquid crystal display (LCD) system. The system in one example has a light source for generating unpolarized light, and an LCD screen arranged in a path of transmittance of the unpolarized light. First and second wire grid polarizers are arranged adjacent to the LCD screen and each have a plurality of nano-scale wires, with the first and second wire grid polarizers have differing polarizations. A pitch of each of the nano-scale wires is no larger than one-third a wavelength of the unpolarized light from the light source. The wire grid polarizers create, in connection with operation of the LCD screen, a 2D light mask suitable for initiating the polymerization of an optically curable material.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: Eric B. DUOSS, James OAKDALE, Nicholas Anthony RODRIGUEZ, Hongtao SONG, Richard CRAWFORD, Carolyn SEEPERSAD, Morgan CHEN
  • Publication number: 20220088868
    Abstract: The present disclosure relates to a tensioning system for use in a stereolithography manufacturing application. The system may have a build plate for supporting a three dimensional part being formed using a photo responsive resin, a base plate and a release element extending over the base plate. The release element is configured to receive a quantity of photo responsive resin for forming a new material layer of the three dimensional part. A pair of tensioning components are secured to opposite ends of the release element, and apply a controlled tension force to the release element during peeling of the release element to reduce a separation force required to separate the release element from the new material layer after the new material layer is cured.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventors: Eric B. DUOSS, James OAKDALE, Nicholas Anthony RODRIGUEZ, Hongtao SONG, Richard CRAWFORD, Carolyn SEEPERSAD, Morgan CHEN
  • Publication number: 20170326816
    Abstract: Various implementations utilize electromagnetic energy in the microwave and/or radio frequency (RF) spectrum to volumetrically solidify selective regions of a base material powder bed (e.g., polymer or ceramic). When they are dry, base materials utilized in powder bed fusion and other additive manufacturing processes are relatively transparent to microwave and RF energy, making it very difficult to heat them with those energy sources. However, mixing or doping the base material powders with conducting particles, such as graphite or carbon black, enhances energy absorption at microwave and radio frequencies, enabling heating and melting. Thus, volumetric additive manufacturing may be achieved by selectively doping a 3D powder bed with energy-absorbing particles in the shape of the desired object and exposing the powder bed to microwave and/or RF energy fields, such that the doped regions are volumetrically sintered into desired objects, leaving the surrounding powder unaffected.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 16, 2017
    Inventors: Carolyn Seepersad, Joseph Beaman, John Pearce