Patents by Inventor Carrie Adeline Cowardin

Carrie Adeline Cowardin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10196453
    Abstract: Clostridium difficile is the most common hospital acquired pathogen in the United States, and infection is in many cases fatal. Toxins A and B are its major virulence factors, but increasingly a third toxin may be present, known as C. difficile transferase (CDT). An ADP-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. It is disclosed herein that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a novel Toll-like Receptor 2 (TLR2) dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, it is disclosed that restoration of TLR2 deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 5, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: Carrie Adeline Cowardin, William A. Petri, Jr.
  • Publication number: 20170334994
    Abstract: Clostridium difficile is the most common hospital acquired pathogen in the United States, and infection is in many cases fatal. Toxins A and B are its major virulence factors, but increasingly a third toxin may be present, known as C. difficile transferase (CDT). An ADP-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. It is disclosed herein that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a novel Toll-like Receptor 2 (TLR2) dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, it is disclosed that restoration of TLR2 deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 23, 2017
    Applicant: University of Virginia Patent Foundation
    Inventors: Carrie Adeline Cowardin, William A. Petri, JR.