Patents by Inventor Carrie Mason

Carrie Mason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965152
    Abstract: The monitoring and control of bioprocesses is provided. More particularly, the present disclosure is directed to formulating buffer products from multiple buffer solutions for feeding the different operations occurring within a bioprocess line. As the buffer product is being formulated, the buffer product is tested for conductivity, refractive index, and optionally pH. The conductivity measurements are used in conjunction with refractive index measurements to ensure that the buffer product not only has the correct concentration of ions but also has the correct concentration of components. A controller can be used to make automatic adjustments to the buffer product should any of the measured parameters fall outside a preset range.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: April 23, 2024
    Assignee: Lonza Ltd.
    Inventors: Thaddaeus Webster, Carrie Mason, Tristan Wilkins
  • Publication number: 20230204421
    Abstract: The monitoring and control of bioprocesses is provided. The present disclosure provides the ability to generate generic calibration models, independent of cell line, using inline Raman probes to monitor changes in glucose, lactate, glutamate, ammonium, viable cell concentration (VCC), total cell concentration (TCC) and product concentration. Calibration models were developed from cell culture using two different CHOK1SV GS-KO™ cell lines producing different monoclonal antibodies (mAbs). Developed predictive models, qualified using an independent CHOK1SV GS-KO™ cell line not used in calibration, measured changes in glucose, lactate, ammonium, VCC, and TCC with minor prediction errors over the course of cell culture with minimal cell line dependence. The development of these generic models allows the application of spectroscopic PAT techniques in a clinical manufacturing environment, where processes are typically run once or twice in GMP manufacturing based on a common platform process.
    Type: Application
    Filed: February 20, 2023
    Publication date: June 29, 2023
    Inventors: Thaddaeus Webster, Brian Hadley, Carrie Mason, Colin Jaques, Seshu Tummala, Ruth Christine Rowland-Jones, Yonatan Levinson, Nicholas Uth, Pankaj Sinha, Eytan Abraham
  • Patent number: 11609120
    Abstract: The monitoring and control of bioprocesses is provided. The present disclosure provides the ability to generate generic calibration models, independent of cell line, using inline Raman probes to monitor changes in glucose, lactate, glutamate, ammonium, viable cell concentration (VCC), total cell concentration (TCC) and product concentration. Calibration models were developed from cell culture using two different CHOK1SV GS-KO™ cell lines producing different monoclonal antibodies (mAbs). Developed predictive models, qualified using an independent CHOK1SV GS-KO™ cell line not used in calibration, measured changes in glucose, lactate, ammonium, VCC, and TCC with minor prediction errors over the course of cell culture with minimal cell line dependence. The development of these generic models allows the application of spectroscopic PAT techniques in a clinical manufacturing environment, where processes are typically run once or twice in GMP manufacturing based on a common platform process.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: March 21, 2023
    Assignee: Lonza Ltd
    Inventors: Thaddaeus Webster, Brian Hadley, Carrie Mason, Colin Jaques, Seshu Tummala, Ruth Christine Rowland-Jones, Yonatan Levinson, Nicholas Uth, Pankaj Sinha, Eytan Abraham
  • Publication number: 20200255792
    Abstract: The monitoring and control of bioprocesses is provided. More particularly, the present disclosure is directed to formulating buffer products from multiple buffer solutions for feeding the different operations occurring within a bioprocess line. As the buffer product is being formulated, the buffer product is tested for conductivity, refractive index, and optionally pH. The conductivity measurements are used in conjunction with refractive index measurements to ensure that the buffer product not only has the correct concentration of ions but also has the correct concentration of components. A controller can be used to make automatic adjustments to the buffer product should any of the measured parameters fall outside a preset range.
    Type: Application
    Filed: February 6, 2020
    Publication date: August 13, 2020
    Inventors: Thaddaeus Webster, Carrie Mason, Tristan Wilkins
  • Publication number: 20190137338
    Abstract: The monitoring and control of bioprocesses is provided. The present disclosure provides the ability to generate generic calibration models, independent of cell line, using inline Raman probes to monitor changes in glucose, lactate, glutamate, ammonium, viable cell concentration (VCC), total cell concentration (TCC) and product concentration. Calibration models were developed from cell culture using two different CHOK1SV GS-KO™ cell lines producing different monoclonal antibodies (mAbs). Developed predictive models, qualified using an independent CHOK1SV GS-KO™ cell line not used in calibration, measured changes in glucose, lactate, ammonium, VCC, and TCC with minor prediction errors over the course of cell culture with minimal cell line dependence. The development of these generic models allows the application of spectroscopic PAT techniques in a clinical manufacturing environment, where processes are typically run once or twice in GMP manufacturing based on a common platform process.
    Type: Application
    Filed: October 5, 2018
    Publication date: May 9, 2019
    Inventors: Thaddaeus Webster, Brian Hadley, Carrie Mason, Colin Jaques, Seshu Tummala, Ruth Christine Rowland-Jones, Yonatan Levinson, Nicholas Uth, Pankaj Sinha, Eytan Abraham