Patents by Inventor Carroll Edward Ball

Carroll Edward Ball has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10639608
    Abstract: A system, apparatus, and method for transferring chemical solutions and synthesizing a tracer. For transferring chemical solutions, the system comprises a primary container; a secondary container; a first line in communication with the primary container and the secondary container. The first line facilitates the flow of gas and/or liquid between the primary container and the secondary container. A valve located upstream of the secondary container and downstream of the primary container regulates flow within the first line; a second line in communication with the secondary container. For synthesizing a tracer, the system includes a source of a solution having a radionuclide. A first container has a tracer precursor and is in communication with the source of solution.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 5, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Umesh B. Gangadharmath, Joseph C. Walsh, Hartmuth C. Kolb, Ricardo Rodriguez, Arkadij M. Elizarov, Carroll Edward Ball
  • Patent number: 8435454
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: May 7, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd L. Graves, Artem Lebedev, Keith E. Schleiffer
  • Publication number: 20120283490
    Abstract: A system, apparatus, and method for transferring chemical solutions and synthesizing a tracer. For transferring chemical solutions, the system comprises a primary container; a secondary container; a first line in communication with the primary container and the secondary container. The first line facilitates the flow of gas and/or liquid between the primary container and the secondary container. A valve located upstream of the secondary container and downstream of the primary container regulates flow within the first line; a second line in communication with the secondary container. For synthesizing a tracer, the system includes a source of a solution having a radionuclide. A first container has a tracer precursor and is in communication with the source of solution.
    Type: Application
    Filed: April 12, 2012
    Publication date: November 8, 2012
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Umesh B. Gangadharmath, Joseph C. Walsh, Hartmuth C. Kolb, Ricardo Rodriguez, Arkadij M. Elizarov, Carroll Edward Ball
  • Patent number: 8273300
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 25, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd Graves, Artem Lebedev
  • Patent number: 8214159
    Abstract: Methods and apparatus to assess current aspects of Quality Control useful for release of radioactive compounds for imaging, such as PET tracers as injectables, in an automated manner, without user interference, and in compliance with regulatory guidelines. The present method and system relates to an integrated automated quality control analysis of a substance utilizing a single sample injection for a plurality of inline quality control tests. A quantitative analysis of the sample via the plurality of quality control tests is conducted. A measurement value of each of the plurality of quality control parameters is determined and a comparison of each measurement value of the plurality of quality control parameters with a predetermined corresponding criterion value is made. A cumulative quality rating for the sample is determined and the validated sample is released based on the quality rating.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: July 3, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Jianzhong Zhang, Arkadij M. Elizarov, Reza Miraghaie, Carroll Edward Ball, Hartmuth C. Kolb
  • Patent number: 8173073
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 8, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Diener, Sean Ford, Reza Miraghaie
  • Patent number: 8110148
    Abstract: Methods and apparatus for facilitating the synthesis of compounds in a batch device are presented. Application of the batch type microfluidic devices to the synthesis of radiolabeled compounds is described. These methods and apparatus enable the selective introduction of multiple reagents via an enhanced rotary flow distribution valve through a single inlet port of the synthetic device. The sequential introduction of multiple reagents through a single inlet port allows an optimal delivery of highly concentrated reagents into the reactor and facilitates the synthesis of the desired products with a minimal loss of materials during transfers, which is critical to the synthesis of radiolabeled biomarkers.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: February 7, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb, Reza Miraghaie, Jianzhong Zhang
  • Patent number: 8071035
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 6, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Talcott Diener, Sean Ford, Reza Miraghaie
  • Publication number: 20110202177
    Abstract: An apparatus and method for chemical synthesis, the method includes accessing a recipe, the recipe including a sequence of one or more processing steps for the chemical synthesis. The processing steps including one or more steps. The recipe is executed by sorting the processing steps and executing the one or more selected steps prior to executing other steps. The chemical synthesis is monitored by providing status data, indicating a status of the execution and enabling input of control data to modify execution based on the status data or user-initiated modification. Information related to the status of the execution is displayed, typically as a graphical representation of a process action.
    Type: Application
    Filed: February 15, 2011
    Publication date: August 18, 2011
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Ansgar Graw, Hartmuth C. Kolb, Uttam D. Shah
  • Publication number: 20110150714
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Application
    Filed: January 7, 2011
    Publication date: June 23, 2011
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd L. Graves, Artem Lebedev, Keith E. Schleiffer
  • Publication number: 20110097245
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Application
    Filed: October 29, 2010
    Publication date: April 28, 2011
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Diener, Sean Ford, Reza Miraghaie
  • Publication number: 20110098465
    Abstract: Methods and apparatus for facilitating the synthesis of compounds in a nonflow-through device are presented. Application of the nonflow-through methods and microfluidic devices to the synthesis of radiolabeled compounds is described. These methods and apparatus enable the introduction of a pressurized gas through a tangential slit into a vortex reactor of the nonflow-through device, while one or more liquids are delivered to the reaction chamber through the same or different inlet ports. The introduction of the pressurized gas produces a cyclonic motion of the mixture within the reactor. Such a mechanism may be used to facilitate the evaporation of various liquids within the reactor at lower temperatures, thus reducing the production of unwanted byproducts that are associated with the use of high temperatures. In addition, thorough mixing of various liquids may be effected rapidly while allowing chemical reactions to take place efficiently within the vortex reactor.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 28, 2011
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb
  • Publication number: 20110008215
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 13, 2011
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd Graves, Artem Lebedev
  • Patent number: 7829032
    Abstract: The present application relates to microfluidic devices and related technologies, and to chemical processes using such devices. More specifically, the application discloses a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner. In particular, this application describe an automated, stand-alone, microfluidic instrument for the multi-step chemical synthesis of radiopharmaceuticals, such as probes for PET and a method of using such instruments.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: November 9, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Robert Michael Van Dam, Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb
  • Publication number: 20100145630
    Abstract: Methods and apparatus to assess current aspects of Quality Control useful for release of radioactive compounds for imaging, such as PET tracers as injectables, in an automated manner, without user interference, and in compliance with regulatory guidelines. The present method and system relates to an integrated automated quality control analysis of a substance utilizing a single sample injection for a plurality of inline quality control tests. A quantitative analysis of the sample via the plurality of quality control tests is conducted. A measurement value of each of the plurality of quality control parameters is determined and a comparison of each measurement value of the plurality of quality control parameters with a predetermined corresponding criterion value is made. A cumulative quality rating for the sample is determined and the validated sample is released based on the quality rating.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 10, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb, Reza Miraghaie, Jianzhong Zhang
  • Publication number: 20100113762
    Abstract: Methods and apparatus for facilitating the synthesis of compounds in a batch device are presented. Application of the batch type microfluidic devices to the synthesis of radiolabeled compounds is described. These methods and apparatus enable the selective introduction of multiple reagents via an enhanced rotary flow distribution valve through a single inlet port of the synthetic device. The sequential introduction of multiple reagents through a single inlet port allows an optimal delivery of highly concentrated reagents into the reactor and facilitates the synthesis of the desired products with a minimal loss of materials during transfers, which is critical to the synthesis of radiolabeled biomarkers.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 6, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb, Reza Miraghaie, Jianzhong Zhang
  • Publication number: 20100093098
    Abstract: Methods and apparatus for facilitating the synthesis of compounds in a nonflow-through device are presented. Application of the nonflow-through methods and microfluidic devices to the synthesis of radiolabeled compounds is described. These methods and apparatus enable the introduction of a pressurized gas through a tangential slit into a vortex reactor of the nonflow-through device, while one or more liquids are delivered to the reaction chamber through the same or different inlet ports. The introduction of the pressurized gas produces a cyclonic motion of the mixture within the reactor. Such a mechanism may be used to facilitate the evaporation of various liquids within the reactor at lower temperatures, thus reducing the production of unwanted byproducts that are associated with the use of high temperatures. In addition, thorough mixing of various liquids may be effected rapidly while allowing chemical reactions to take place efficiently within the vortex reactor.
    Type: Application
    Filed: October 13, 2009
    Publication date: April 15, 2010
    Applicant: Siemens Medical Solutions
    Inventors: Carroll Edward Ball, Arkadij Elizarov, Hartmuth C. Kolb
  • Publication number: 20090036668
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Application
    Filed: April 14, 2008
    Publication date: February 5, 2009
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth Kolb, R. Michael van Dam, Lawrence Talcott Diener, Sean Ford, Reza Miraghaie
  • Publication number: 20080233018
    Abstract: The present application relates to microfluidic devices and related technologies, and to chemical processes using such devices. More specifically, the application discloses a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner. In particular, this application describe an automated, stand-alone, microfluidic instrument for the multi-step chemical synthesis of radiopharmaceuticals, such as probes for PET and a method of using such instruments.
    Type: Application
    Filed: January 23, 2008
    Publication date: September 25, 2008
    Inventors: Robert Michael van Dam, Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb