Patents by Inventor Carter Kittrell

Carter Kittrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7887774
    Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: February 15, 2011
    Assignee: William Marsh Rice University
    Inventors: Michael S. Strano, Monica Usrey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H Hauge, Richard E. Smalley, Irene Marie Marek, legal representative
  • Publication number: 20100284898
    Abstract: According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.
    Type: Application
    Filed: May 7, 2007
    Publication date: November 11, 2010
    Applicant: William Marsh Rice University
    Inventors: Kirk J. Ziegler, Urs Rauwald, Robert H. Hauge, Howard K. Schmidt, Irene Morin Marek, Zhenning Gu, W. Carter Kittrell
  • Publication number: 20100140591
    Abstract: A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 10, 2010
    Applicant: William Marsh RIce University
    Inventors: Nolan Walker Nicholas, W Carter Kittrell, Myung Jong Kim, Howard K. Schmidt
  • Patent number: 7727504
    Abstract: The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 1, 2010
    Assignee: William Marsh Rice University
    Inventors: W. Carter Kittrell, Yuhuang Wang, Myung Jong Kim, Robert H. Hauge, Richard E. Smalley, Irene Morin Marek, legal representative
  • Publication number: 20100028247
    Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
    Type: Application
    Filed: July 1, 2009
    Publication date: February 4, 2010
    Applicant: William Marsh Rice University
    Inventors: Michael S. Strano, Monica Ursey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H. Hauge
  • Publication number: 20090294753
    Abstract: A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.
    Type: Application
    Filed: March 5, 2007
    Publication date: December 3, 2009
    Applicant: William Marsh Rice University
    Inventors: Robert H. Hauge, Ya-Qiong Xu, Hongwei Shan, Nolan Walker Nicholas, Myung Jong Kim, Howard K. Schmidt, W. Carter Kittrell
  • Patent number: 7585420
    Abstract: The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800° C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H2, CO2, H2O, and/or O2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: September 8, 2009
    Assignee: William Marsh Rice University
    Inventors: Yuhuang Wang, Robert H. Hauge, Howard K. Schmidt, Myung Jong Kim, W. Carter Kittrell
  • Patent number: 7572426
    Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: August 11, 2009
    Assignee: William Marsh Rice University
    Inventors: Michael S. Strano, Monica Usrey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H. Hauge, Richard E. Smalley
  • Publication number: 20090156429
    Abstract: The present invention provides a technology called Pulse-Multiline Excitation or PME. This technology provides a novel approach to fluorescence detection with application for high-throughput identification of informative SNPs, which could lead to more accurate diagnosis of inherited disease, better prognosis of risk susceptibilities, or identification of sporadic mutations. The PME technology has two main advantages that significantly increase fluorescence sensitivity: (1) optimal excitation of all fluorophores in the genomic assay and (2) “color-blind” detection, which collects considerably more light than standard wavelength resolved detection. Successful implementation of the PME technology will have broad application for routine usage in clinical diagnostics, forensics, and general sequencing methodologies and will have the capability, flexibility, and portability of targeted sequence variation assays for a large majority of the population.
    Type: Application
    Filed: February 18, 2009
    Publication date: June 18, 2009
    Inventors: Graham B.I. Scott, Carter Kittrell, Robert F. Curl, Michael Metzker
  • Patent number: 7511811
    Abstract: The present invention provides a technology called Pulse-Multiline Excitation or PME. This technology provides a novel approach to fluorescence detection with application for high-throughput identification of informative SNPs, which could lead to more accurate diagnosis of inherited disease, better prognosis of risk susceptibilities, or identification of sporadic mutations. The PME technology has two main advantages that significantly increase fluorescence sensitivity: (1) optimal excitation of all fluorophores in the genomic assay and (2) “color-blind” detection, which collects considerably more light than standard wavelength resolved detection. This technology differs significantly from the current state-of-the-art DNA sequencing instrumentation, which features single source excitation and color dispersion for DNA sequence identification.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: March 31, 2009
    Assignee: Baylor College of Medicine and Rice University
    Inventors: Graham B. I. Scott, Carter Kittrell, Robert F. Curl, Michael L. Metzker
  • Publication number: 20080105648
    Abstract: The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800° C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H2, CO2, H2O, and/or O2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.
    Type: Application
    Filed: December 14, 2005
    Publication date: May 8, 2008
    Applicant: William Marsh Rice University
    Inventors: Yuhuang Wang, Robert H. Hauge, Howard K. Schmidt, Myung Jong Kim, W. Carter Kittrell
  • Publication number: 20080063587
    Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
    Type: Application
    Filed: July 29, 2004
    Publication date: March 13, 2008
    Applicant: Board of Trustees of the University of Illinois
    Inventors: Michael S. Strano, Monica Usrey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H. Hauge, Richard E. Smalley
  • Patent number: 7090819
    Abstract: The present invention relates to an all gas-phase process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process comprises oxidation of the single-wall carbon nanotube material, reduction and reaction of a halogen-containing gas with the metal-containing species. The oxidation step may be done dry or in the presence of water vapor.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 15, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Wan-Ting Chiang, Yuemei Yang, Kenneth A. Smith, Wilber Carter Kittrell, Zhenning Gu
  • Patent number: 7074310
    Abstract: The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: July 11, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, W. Carter Kittrell, Ramesh Sivarajan, Michael S. Strano, Sergei M. Bachilo, R. Bruce Weisman
  • Publication number: 20060139634
    Abstract: The present invention provides a technology called Pulse-Multiline Excitation or PME. This technology provides a novel approach to fluorescence detection with application for high-throughput identification of informative SNPs, which could lead to more accurate diagnosis of inherited disease, better prognosis of risk susceptibilities, or identification of sporadic mutations. The PME technology has two main advantages that significantly increase fluorescence sensitivity: (1) optimal excitation of all fluorophores in the genomic assay and (2) “color-blind” detection, which collects considerably more light than standard wavelength resolved detection. This technology differs significantly from the current state-of-the-art DNA sequencing instrumentation, which features single source excitation and color dispersion for DNA sequence identification.
    Type: Application
    Filed: October 12, 2005
    Publication date: June 29, 2006
    Inventors: Graham Scott, Carter Kittrell, Robert Curl, Michael Metzker
  • Patent number: 7052668
    Abstract: A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: May 30, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Peter Athol Willis, W. Carter Kittrell
  • Patent number: 6995841
    Abstract: The present invention provides a technology called Pulse-Multiline Excitation or PME. This technology provides a novel approach to fluorescence detection with application for high-throughput identification of informative SNPs, which could lead to more accurate diagnosis of inherited disease, better prognosis of risk susceptibilities, or identification of sporadic mutations. The PME technology has two main advantages that significantly increase fluorescence sensitivity: (1) optimal excitation of all fluorophores in the genomic assay and (2) “color-blind” detection, which collects considerably more light than standard wavelength resolved detection. Successful implementation of the PME technology will have broad application for routine usage in clinical diagnostics, forensics, and general sequencing methodologies and will have the capability, flexibility, and portability of targeted sequence variation assays for a large majority of the population.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: February 7, 2006
    Assignees: Rice University, Baylor College of Medicine
    Inventors: Graham B. I. Scott, Carter Kittrell, Robert F. Curl, Michael L. Metzker
  • Patent number: 6913789
    Abstract: A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: July 5, 2005
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Peter Athol Willis, W. Carter Kittrell
  • Publication number: 20040040834
    Abstract: The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions.
    Type: Application
    Filed: March 4, 2003
    Publication date: March 4, 2004
    Inventors: Richard E. Smalley, Robert H. Hauge, W. Carter Kittrell, Ramesh Sivarajan, Michael S. Strano, Sergei M. Bachilo, R. Bruce Weisman
  • Publication number: 20040038251
    Abstract: The invention relates to macroscopic amounts of (n, m) type single-wall carbon nanotubes and sensing and monitoring devices comprising specific nanotube types. Selected (n, m)-type fractions of single-wall carbon nanotubes are separated from a suspension of mixed single-wall carbon nanotubes are individually dispersed and isolated. The nanotubes are isolated and precluded from reassociating with other nanotubes by encasing the nanotube with a non-perturbing molecular species, such as surfactant molecules or polymers that can wrap around the nanotube. In contrast to metallic single-wall carbon nanotubes, semiconducting single-wall carbon nanotubes have been found to fluoresce in the near-IR region of the electromagnetic spectrum. The nanotubes are very sensitive to environmental perturbations and the nanotube's fluorescence profile will be affected by these perturbations.
    Type: Application
    Filed: March 4, 2003
    Publication date: February 26, 2004
    Inventors: Richard E. Smalley, Robert H. Hauge, W. Carter Kittrell, Ramesh Sivarajan, Michael S. Strano, Sergei M. Bachilo, R. Bruce Weisman