Patents by Inventor Carter S. Haines

Carter S. Haines has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200088175
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber twist-inserted polymer fibers generate tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize coiled polymer fibers and can be either neat or comprising a guest. In some embodiments, the coiled polymer fibers actuator can be incorporated into an article, such as a textile, braid, clothing, smart packaging, or a mechanical system, and the coiled polymer fiber in the coiled polymer fiber actuator can have a stroke amplification factor of 5 or greater.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 19, 2020
    Applicant: Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung DeAndrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman
  • Patent number: 10480491
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize coiled yarns/polymer fibers and can be either neat or comprising a guest. In some embodiments, the torsional fiber actuator includes a first polymer fiber (exhibiting a first polymer fiber diameter) and a torsional return spring in communication with the first polymer fiber. The first polymer fiber is configured to include a first plurality of twists in a first direction to produce a twisted polymer fiber. The first polymer fiber is further configured to include a plurality of coils in the twisted polymer fiber in a second direction each coil having a mean coil diameter.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: November 19, 2019
    Assignee: THE BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung DeAndrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman
  • Publication number: 20190096540
    Abstract: Superelastic conductive fibers, and more particularly, sheath-core fibers for superelastic electronics, sensors, and muscles, and a process for fabricating of highly stretchable sheath-core conducting fibers by wrapping fiber-direction-oriented conductive nanofiber sheets on stretched rubber fiber cores.
    Type: Application
    Filed: July 15, 2016
    Publication date: March 28, 2019
    Applicant: Board of Regents, The University of Texas System
    Inventors: Ray H. Baughman, Zunfeng Liu, Shaoli Fang, Francisco A. Moura, Nan Jiang, Dong Qian, Hongbing Lu, Xavier N. Lepro, Carter S. Haines
  • Publication number: 20180327937
    Abstract: The described incandescent tension annealing processes involve thermally annealing twisted or coiled carbon nanotube (CNT) yarns at high-temperatures (1000° C. to 3000° C.) while these yarns are under tensile loads. These processes can be used for increasing yarn modulus and strength and for stabilizing both twisted and coiled CNT yarns with respect to unwanted irreversible untwist, thereby avoiding the need to tether torsional and tensile artificial muscles, and increasing the mechanical loads that can be moved by these muscles.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 15, 2018
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Jiangtao Di, Shaoli Fang, Carter S. Haines, Na Li, Ray H. Baughman
  • Publication number: 20180073490
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize coiled yarns/polymer fibers and can be either neat or comprising a guest. In some embodiments, the torsional fiber actuator includes a first polymer fiber (exhibiting a first polymer fiber diameter) and a torsional return spring in communication with the first polymer fiber. The first polymer fiber is configured to include a first plurality of twists in a first direction to produce a twisted polymer fiber. The first polymer fiber is further configured to include a plurality of coils in the twisted polymer fiber in a second direction each coil having a mean coil diameter.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Applicant: Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung DeAndrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman
  • Patent number: 9903350
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: February 27, 2018
    Assignee: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung De Andrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Fatma Goktepe, Ozer Goktepe, Dongseok Suh, Ray H. Baughman
  • Patent number: 9784249
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: October 10, 2017
    Assignee: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung De Andrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman
  • Publication number: 20150219078
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Application
    Filed: August 1, 2013
    Publication date: August 6, 2015
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung DeAndrade, Shaoli Fang, Jiyoung Oh, Mikhail Kozlov, Fatma Goktepe, Ozer Goktepe, Dongseok Suh, Ray H. Baughman
  • Publication number: 20150152852
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Application
    Filed: January 30, 2015
    Publication date: June 4, 2015
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung De Andrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman