Patents by Inventor Cary Delano

Cary Delano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817835
    Abstract: A first system includes first and second buck-boost amplifiers. The first amplifier is connected to a battery, includes a first inductor and a first plurality of switches connected to the first inductor, and drives first and second loads. The second amplifier is connected to the battery, includes a second inductor and a second plurality of switches connected to the second inductor, and drives the first and second loads. A controller drives the first and second plurality of switches to operate each of the first and second amplifiers in a single inductor multiple output mode. A second system includes multiple buck-boost amplifiers connected to a battery and driving respective loads. Each amplifier includes inductors and switches connected to the inductors. A controller drives the switches to utilize one or more inductors based on an amount of power used by each amplifier to drive the respective loads.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: November 14, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Doug Heineman, Graeme Docherty, Feng Yu
  • Patent number: 11817725
    Abstract: A charger device includes a Single-Input-Multiple-Output (SIMO) device and a controller. The SIMO device includes a first transistor connected to an input and a first end of an inductor, a second transistor connected to ground and the first end of the inductor, a third transistor connected to a second end of the inductor and a first output, and a fourth transistor connected to the second end of the inductor and a second output. The controller is connected to the SIMO device and is configured to cause the SIMO device to charge the inductor using a first power source coupled to the input during a first time period and discharge the inductor to charge a second power source coupled to the first output during a second time period.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: November 14, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Gaurav Mital, Taichi Hoshino
  • Patent number: 11728730
    Abstract: A power converter is disclosed. The power converter includes a Single-Input-Multiple-Output (SIMO) device includes a first transistor connected to an input and a first end of an inductor, a second transistor connected to a second end of the inductor and a first output, and a third transistor connected to the second end of the inductor and a second output. The power converter also includes a controller connected to the SIMO device and is configured to maintain a minimum inductor current through the inductor between charging cycles and to cause the minimum inductor current to transition to a charging inductor current during a charging cycle. The charging inductor current is based on a difference between an output voltage signal and a target voltage signal.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: August 15, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Gaurav Mital
  • Patent number: 11496096
    Abstract: A first module is configured to, based on an input sample, determine a first duty cycle. A second module is configured to, based on a battery voltage and the first duty cycle, determine a second duty cycle. A third module is configured to: set a scalar value based on at least one of a battery current, an amplitude of the input sample, the second duty cycle, and an output voltage; and generate a start signal at a rate equal to a predetermined rate multiplied by the scalar value. A fourth module is configured to set a third duty cycle based on the second duty cycle and the scalar value. A fifth module is configured to generate a PWM output based on the start signal and the third duty cycle. A sixth module is configured to apply power to gates of FETs of a voltage converter based on the PWM output.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: November 8, 2022
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Doug Heineman, Graeme Docherty, Feng Yu
  • Publication number: 20220209668
    Abstract: A power converter is disclosed. The power converter includes a Single-Input-Multiple-Output (SIMO) device includes a first transistor connected to an input and a first end of an inductor, a second transistor connected to a second end of the inductor and a first output, and a third transistor connected to the second end of the inductor and a second output. The power converter also includes a controller connected to the SIMO device and is configured to maintain a minimum inductor current through the inductor between charging cycles and to cause the minimum inductor current to transition to a charging inductor current during a charging cycle. The charging inductor current is based on a difference between an output voltage signal and a target voltage signal.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Inventors: Cary DELANO, Gaurav Mital
  • Patent number: 11336178
    Abstract: A power converter is disclosed. The power converter includes a Single-Input-Multiple-Output (SIMO) device includes a first transistor connected to an input and a first end of an inductor, a second transistor connected to a second end of the inductor and a first output, and a third transistor connected to the second end of the inductor and a second output. The power converter also includes a controller connected to the SIMO device and is configured to maintain a minimum inductor current through the inductor between charging cycles and to cause the minimum inductor current to transition to a charging inductor current during a charging cycle. The charging inductor current is based on a difference between an output voltage signal and a target voltage signal.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 17, 2022
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Gaurav Mital
  • Publication number: 20220045609
    Abstract: A charger device includes a Single-Input-Multiple-Output (SIMO) device and a controller. The SIMO device includes a first transistor connected to an input and a first end of an inductor, a second transistor connected to ground and the first end of the inductor, a third transistor connected to a second end of the inductor and a first output, and a fourth transistor connected to the second end of the inductor and a second output. The controller is connected to the SIMO device and is configured to cause the SIMO device to charge the inductor using a first power source coupled to the input during a first time period and discharge the inductor to charge a second power source coupled to the first output during a second time period.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Cary DELANO, Gaurav MITAL, Taichi HOSHINO
  • Patent number: 11190100
    Abstract: A charger device comprises a Single-Input-Multiple-Output (SIMO) device including a first transistor connected to an input and a first end of an inductor, a second transistor connected to ground and the first end of the inductor, a third transistor connected to a second end of the inductor and a first output, a fourth transistor connected to the second end of the inductor and a second output, and a controller connected to the SIMO device. The controller is configured to cause the SIMO device to charge the inductor based upon an input signal using a first power source coupled to the input during a first time period and discharge the inductor to charge at least one of the first power source and a second power source coupled to the first output during an unused time period.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: November 30, 2021
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Gaurav Mital, Taichi Hoshino
  • Publication number: 20210021243
    Abstract: A first system includes first and second buck-boost amplifiers. The first amplifier is connected to a battery, includes a first inductor and a first plurality of switches connected to the first inductor, and drives first and second loads. The second amplifier is connected to the battery, includes a second inductor and a second plurality of switches connected to the second inductor, and drives the first and second loads. A controller drives the first and second plurality of switches to operate each of the first and second amplifiers in a single inductor multiple output mode. A second system includes multiple buck-boost amplifiers connected to a battery and driving respective loads. Each amplifier includes inductors and switches connected to the inductors. A controller drives the switches to utilize one or more inductors based on an amount of power used by each amplifier to drive the respective loads.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: Cary DELANO, Doug HEINEMAN, Graeme DOCHERTY, Feng YU
  • Publication number: 20200382063
    Abstract: A first module is configured to, based on an input sample, determine a first duty cycle. A second module is configured to, based on a battery voltage and the first duty cycle, determine a second duty cycle. A third module is configured to: set a scalar value based on at least one of a battery current, an amplitude of the input sample, the second duty cycle, and an output voltage; and generate a start signal at a rate equal to a predetermined rate multiplied by the scalar value. A fourth module is configured to set a third duty cycle based on the second duty cycle and the scalar value. A fifth module is configured to generate a PWM output based on the start signal and the third duty cycle. A sixth module is configured to apply power to gates of FETs of a voltage converter based on the PWM output.
    Type: Application
    Filed: May 15, 2020
    Publication date: December 3, 2020
    Inventors: Cary DELANO, Doug HEINEMAN, Graeme DOCHERTY, Feng YU
  • Patent number: 10797660
    Abstract: Various buck-boost amplifier architectures are disclosed. In some architectures, a plurality of amplifiers use one or more inductors from a shared bank of inductors as needed to deliver variable amounts of power to respective loads. In some architectures, each amplifier includes multiple inductors and switches that are controlled to vary the number of inductors used in an amplifier based on a power requirement of the amplifier to drive its load. In some architectures, the switches include well switching devices. In some architectures, each amplifier drives multiple loads and is operated in a single inductor multiple output (SIMO) mode. In all architectures, the loads include speakers, piezo elements, and motors.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: October 6, 2020
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Cary Delano, Doug Heineman, Graeme Docherty, Feng Yu
  • Publication number: 20200244167
    Abstract: A power converter is disclosed. The power converter includes a Single-Input-Multiple-Output (SIMO) device includes a first transistor connected to an input and a first end of an inductor, a second transistor connected to a second end of the inductor and a first output, and a third transistor connected to the second end of the inductor and a second output. The power converter also includes a controller connected to the SIMO device and is configured to maintain a minimum inductor current through the inductor between charging cycles and to cause the minimum inductor current to transition to a charging inductor current during a charging cycle. The charging inductor current is based on a difference between an output voltage signal and a target voltage signal.
    Type: Application
    Filed: May 17, 2019
    Publication date: July 30, 2020
    Inventors: Cary DELANO, Gaurav Mital
  • Publication number: 20200021190
    Abstract: A charger device comprises a Single-Input-Multiple-Output (SIMO) device including a first transistor connected to an input and a first end of an inductor, a second transistor connected to ground and the first end of the inductor, a third transistor connected to a second end of the inductor and a first output, a fourth transistor connected to the second end of the inductor and a second output, and a controller connected to the SIMO device. The controller is configured to cause the SIMO device to charge the inductor based upon an input signal using a first power source coupled to the input during a first time period and discharge the inductor to charge at least one of the first power source and a second power source coupled to the first output during an unused time period.
    Type: Application
    Filed: May 17, 2019
    Publication date: January 16, 2020
    Inventors: Cary Delano, Gaurav Mital, Taichi Hoshino
  • Publication number: 20190319593
    Abstract: Various buck-boost amplifier architectures are disclosed. In some architectures, a plurality of amplifiers use one or more inductors from a shared bank of inductors as needed to deliver variable amounts of power to respective loads. In some architectures, each amplifier includes multiple inductors and switches that are controlled to vary the number of inductors used in an amplifier based on a power requirement of the amplifier to drive its load. In some architectures, the switches include well switching devices. In some architectures, each amplifier drives multiple loads and is operated in a single inductor multiple output (SIMO) mode. In all architectures, the loads include speakers, piezo elements, and motors.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 17, 2019
    Inventors: Cary DELANO, Doug HEINEMAN, Graeme DOCHERTY, Feng YU
  • Publication number: 20080019546
    Abstract: An audio amplifier system having improved power efficiency by wasting less power in its bias voltage circuit. An amplifier provides a voice signal to a first (+) input of a loudspeaker and a high efficiency converter provides a bias voltage to a second (?) input of the loudspeaker. In multi-loudspeaker systems, a single high efficiency converter can bias all the loudspeakers at a common node. The high efficiency converter can be a charge pump or a buck converter or the like, and has greater than 90% efficiency.
    Type: Application
    Filed: March 20, 2007
    Publication date: January 24, 2008
    Applicant: Leadis Technology, Inc.
    Inventors: Cary Delano, William Chester
  • Publication number: 20070236294
    Abstract: A new Class L amplifier which dynamically switches between multiple pairs of power rails, and has the ability to select the most advantageous combination of rails for the minimization of power dissipation in the amplifier. A bridged amplifier system using two Class L amplifiers to drive a load.
    Type: Application
    Filed: March 20, 2007
    Publication date: October 11, 2007
    Applicant: Leadis Technology, Inc.
    Inventor: Cary Delano
  • Publication number: 20070236295
    Abstract: An RF power amplification system having a power amplifier, a matching network, and an antenna power controller which compares a voltage at the matching network output to a voltage at the matching network input and uses a result of that comparison to manipulate the power amplifier and/or the matching network, to control the power applied to the antenna. In one embodiment, the power controller tristates one or more of a plurality of parallel power amplifier devices in the amplifier, to control the antenna power. In another embodiment, the power controller manipulates a plurality of parallel resistors or other impedances in the power amplifier, switching some impedances in and some impedances out, to maximize the power coupling to the antenna or to operate the amplifier device in a maximally efficient operating range.
    Type: Application
    Filed: March 20, 2007
    Publication date: October 11, 2007
    Applicant: Leadis Technology, Inc.
    Inventor: Cary Delano
  • Publication number: 20070222522
    Abstract: A system for driving a plurality of loads each connected to respective signal terminals and to a shared common load terminal. Multiple conventional signal amplifiers each provide a content signal at one of the signal terminals. The signal amplifiers each have a primary-power upper terminal, to receive a first voltage (V1) from a first power supply, and a primary-power lower terminal, to receive a second voltage (V2) from the first power supply. A bias amplifier biases the common load terminal, and has a secondary-power upper terminal to receive a third voltage (V3) from a second power supply and a secondary-power lower terminal to receive a fourth voltage (V4) from the second power supply, wherein V2?V4<V3?V1.
    Type: Application
    Filed: March 10, 2006
    Publication date: September 27, 2007
    Applicant: PORTAL PLAYER, INC
    Inventors: Cary Delano, William Chester
  • Publication number: 20070210947
    Abstract: A sigma delta analog-to-digital converter (ADC) to convert an analog converter input signal to a digital converter output signal. Multiple integrator stages, including at least a first and a final one, each receive an analog input signal and an analog feedback signal and output an integrated signal. The integrator stages are serially ordered to receive the converter input signal and then preceding of the integrated signals. A quantizer receives the integrated signal of the final or multiple integrator stages and provides the converter output signal. A feedback system also receives the converter output signal and provides the respective analog feedback signals to at least one of the integrator stages. The feedback system particularly includes resisters arrayed so that at least one is in the paths of all of the analog feedback signals and others are only in the paths of each individual analog feedback signal.
    Type: Application
    Filed: March 10, 2006
    Publication date: September 13, 2007
    Applicant: PORTAL PLAYER, INC.
    Inventor: Cary Delano
  • Patent number: 5808491
    Abstract: A method and apparatus are provided for sensing a common mode signal of a differential circuit. A first full wave rectifier samples the differential signal and generates a first rectified signal. A second full wave rectifier samples the differential signal and generates a second rectified signal. An averaging circuit coupled to the first and second full wave rectifiers averages the first and second rectified signals and generates the common mode signal.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: September 15, 1998
    Assignee: Tripath Technology, Inc.
    Inventor: Cary Delano